

#RESEARCHNEVERSTOPS

Evotec

Translational Biology Department In vivo expertise and capabilities

Oncology and Immuno-Oncology

Agenda

In vivo capabilities, PK and early tox platforms to support the projects

In vivo Oncology and Immuno-oncology expertise

An experienced team of in vivo scientists

State-of-the-art animal facilities in Toulouse

- Group of over ≈100 scientists, 2 in-house veterinarians
- AAALAC-accredited animal facility
- Disease area expertise
 - Oncology and immuno-oncology
 - Immunology and inflammation
 - BSL3 infectious disease (Tuberculosis, SARS-Cov-2 ...)
- Drug discovery and research services (non-GLP) include:
 - **PK** studies (supported by **formulation** assay/screening)
 - PK/PD and efficacy evaluation
 - Early discovery toxicology (MTD, TK, necropsy, histopathology & safety biomarkers)
 - Biomarker discovery and hypothesis testing/validation
- Scientifically tailored approaches to discovery programs, continuous and interactive exchanges for decision making

- Area: ≈4,000 m² state-of-the-art animal facility Mouse capacity: 46,440 Rat capacity: 5,400 Gerbils & hamsters: 1090 Rabbits: & Guinea pigs: 540
- Dedicated procedure & surgery rooms, drug preparation room
- X-ray irradiation and imaging

Fast & high quality pharmacokinetic data

Evotec PK platform

Obtaining PK data is a key requirement for the evaluation of compounds in vivo

- Data analysis using Phoenix[®] WinNonlin[®] 6.3 software
- Evotec can offer cassette PK screening of up to 5 compounds simultaneously
- Extensive Dx formulation experience to guide choice of vehicle
- Administration routes; intravenous (bolus and infusion), per oral, intraperitoneal, subcutaneous, intra cerebrospinal, intramuscular, pulmonary, intratracheal (nebulized, aerosolized, dry powder)
- Sampling types; jugular vein cannulation, cardiac puncture, tail vein micro-sampling, microdialysis
- Matrices; blood, plasma, CSF, BALF, tissues, bile, urine and faeces

Cycle time: 5 business days from compound receipt to data

34.6 ± 0.3 48.1 ± 0.5

880 ± 28

1248 ± 380

CL (mL/min/Kg)

AUCinf (ng.hr/mL

Liver Blood Flow (%)

Exploratory in vivo toxicity studies

Evotec early tox platform (non GLP) to derisk projects and explore safety ratio

Agenda

In vivo capabilities, PK and early tox platforms to support the projects

In vivo Oncology and Immuno-Oncology expertise

Fully integrated Oncology drug discovery

Evotec Oncology platform

Focusing on innovative targets with first-in-class potential

Evotec oncology themes

Tumour Microenvironment	Cancer Metabolism	Tumour survival and proliferation
Targeting for ex mechanisms of immune exclusion from the tumours	Targeting mechanisms of metabolic adaptation	Targeting mechanisms underpinning tumour survival and proliferation
	Glucose Glycolysis C C C C C C C C C C C C C	Glucose 2 ATP Pyruvate Lactate

>For single agent therapies or combination with SoC therapies

Oncology and immuno-oncology in vivo

A mix of proprietary assets and validated assays

PK/PD correlation	Mouse or rat tumor models	 Human xenograft models: s.c. & orthotopic models in immunodeficient and humanized mice Syngeneic models: s.c. & orthotopic implantation of tumour cells in immunocompetent mice. suited for immuno therapy & combination studies Tailored models with PK and PD readouts with biostatistical support Target engagement, biomarker or mechanism of action studies Efficacy 	
	Specialised models	 <i>in vivo</i> T-cell proliferation assay Adoptive cell transfer (in development) GvHD model Chemo-induced alopecia (hair loss) 	
Tumor volume follow up 2500 1000	Readouts	 Sampling: tumour, blood, urine, organs End points: tumour size, haematology, clinical chemistry, phosphoprotein analysis (MSD Technology, Western blot, ELISA), mRNA analysis, flow cytometry, histology, immunohistochemistry Tumour imaging: <i>in vivo</i> imaging (bioluminescence, fluorescence), X-ray imaging, Laser doppler, quantitative image analysis Compound blood exposure: Bioanalysis (Mass spectrometry; ELISA for Biologics) Early toxicology: blood biochemistry, haematology, organ specific & target specific safety biomarkers 	

Clinically relevant readouts for in vivo studies

Technological resources for biomarker discovery and validation

Human and murine tumor models

Development of cell line-derived models on demand

- XENOGRAFT tumour models
 - Choice of the cancer cell type: based on therapeutic indication, molecular profile, *in vitro* work...
 - In immunocompromised or humanized mice or rat
- Orthotopic implantation can be considered to foster the original location
 - Skills in breast, lung, liver, bladder, ovary, leukemic cells implantation …
 - Luciferase-engineered cells for time-course follow up of tumour growth
- Examples of cancer cell lines already worked on U87 (glioblastoma), H520, H1299, H460, NIH-H1417, NIH-H69 and DMS114 (Lung), HT-1080 (fibrosarcoma), HCT116 (colon), KYSE-520 (esophageal SCC), lymphoma (TMD-8, OCI-LY3), RT112 (Bladder), HEP3B & HEPG2 (hepatocarcinoma), MV4;11 (acute leukemia), TMD8 (lymphoma)...
- PDX models outsourced on demand

TMD8 tumor volume follow up

TCC97-7 tumour in urothelium

• SYNGENEIC tumour models

- Integrity of the tumour microenvironment (immune populations, stroma/fibroblasts)
- Responses to standard of care therapy and immune checkpoint therapies (PD-1, CTLA4 and PDL-1) available for combination studies
- Examples of cancer cell lines worked on (s.c. or orthotopic)
 - Breast 4T1; EMT6 (mammary fat pad)
 - Colon CT26 & MC38
 - Lung LL2 (transpleural implantation)
 - Skin B16-BL6 (epidermis)
 - Kidney Renca-Luc (renal capsule)
 - Ovary ID8 (i.p.)
 - Leukemia C1498, lymphoma E.G7-OVA
 - Fibrosarcoma MCA205...

Case study: PK/PD study in tumour-bearing mice

pERK levels in tumours modulated by a compound targeting a RTK upstream the Erk signaling

Pre-clinical efficacy study in oncology

Tumour xenograft model and dose response of an inhibitor (smol targeted therapy)

Tumour growth inhibition observed at the higher doses after chronic dosing is correlated with the target engagement of the compound in the tumours and the compound concentrations

Immuno-oncology

From therapeutic efficacy to Mode of Action (MoA)

Syngeneic mouse model expertise

Custom-tailored cell line tumour models can be developed on request

Indication	Cell line	Mouse strain	ain Immune CheckPoint Therapy (ICT) response (based on T/C ratio)				
Colorectal	CT26	BALB/c	αPD-1	-	αCTLA-4	α PD-1+ α CTLA-4	
	MC38	C57BI6/J	αPD-1	αPD-L1	αCTLA-4	α PD-1+ α CTLA-4	
Breast	4T1	BALB/c	αPD-1	-	αCTLA-4	-	
	EMT6	BALB/c –					
Fibrosarcoma	MCA205	C57BI6/J	αPD-1	αPD-L1	-		
Lymphoma	EG7-OVA	C57BI6/J	-	αPD-L1	-		
Pulmonary	LL2	C57BI6/J	_				
Melanoma	B16	C57BI6/J	_				
Renal cell carcinoma	Renca	BALB/c	_				
Ovarian	ID8	C57BI6/J		-	-		

Cell Quality Control

(performed before each inoculation)

- Test for mycoplasma contamination (PCR)
- Cell count and size distribution
- Essential surface markers expression: MHC-I and PD-L1 expression (flow cytometry)
- Control doubling time

📃 High 📒 Intermediate 📒 No responder

Humanized mice for the immune system (in development)

Mouse generation and providers

Human tumour-immune context in BRGSF-His humanized mice

Opportunity to assess PD and immunotherapy efficacy in a human immune-tumor context

PD = pharmacodynamic, MSD = Meso Scale Discovery, FACS = fluorescence-activated single cell sorting (flow cytometry), IHC = immunochemistry and TNBC = Triple Negative Breast cancer Results are expressed as mean ± SD or individual data.

Technical expertise: immune response profiling

Off-the-shelf or custom cytometry panel to fit your needs

Capabilities in histological processing and analysis

Different workflows tailored to customer needs

#RESEARCHNEVERSTOPS

Your contact:

Pascale Lejeune, PhD VP, Head Translational Biology Department pascale.lejeune@evotec.com

Frédérique Dol-Gleizes, PhD Group Leader, Head *in vivo* Pharmacology group frederique.dol-gleizes@evotec.com

Technical expertise: Adoptive Cell Transfer

Know-how in establishing models for *in vivo* target validation or cell therapy

PAGE 20

Results are expressed as mean \pm SD. Statistical analysis: Mixed-effects model, Kruskal-Wallis test or Brown-Forsythe ANOVA test with Tukey's, Dunn's or Dunnett's T3 multiple comparisons test, respectively (ns p>0.05, ** p<0.01, *** p<0.001 and **** p<0.0001)

Technical expertise: Isolation of immune cell populations

Cell sorting of immune cell populations for *ex vivo/in vivo* functional assays

Technical expertise: Custom assays development

In house ELISA development to palliate lack or insensitivity of commercially available kits

Technical expertise: Monitoring of effector T-cells functionality

IFN-γ ELISpot for detection of low-level T-cells responses

