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ORIGINAL RESEARCH

In-depth mechanistic analysis including high-throughput RNA sequencing in the 
prediction of functional and structural cardiotoxicants using hiPSC cardiomyocytes
Alicia Rosell-Hidalgoa*, Christopher Bruhnb*, Emma Shardlowa, Ryan Bartona, Stephanie Rydera, Timur Samatovb, 
Alexandra Hackmannb, Gerald Ryan Aquinob, Micael Fernandes Dos Reisb, Vladimir Galatenkob, Ruediger Fritschb, 
Cord Dohrmannb and Paul A Walker a 

aCyprotex Discovery Ltd UK, Macclesfield, UK; bEvotec International GmbH, Göttingen, Germany

ABSTRACT
Background: Cardiotoxicity remains one of the most reported adverse drug reactions that lead to drug 
attrition during pre-clinical and clinical drug development. Drug-induced cardiotoxicity may develop as 
a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the 
myocardium) and/or as a structural change, resulting in loss of viability and morphological damage to 
cardiac tissue.
Research design and methods: Non-clinical models with better predictive value need to be estab-
lished to improve cardiac safety pharmacology. To this end, high-throughput RNA sequencing 
(ScreenSeq) was combined with high-content imaging (HCI) and Ca2+ transience (CaT) to analyze 
compound-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).
Results: Analysis of hiPSC-CMs treated with 33 cardiotoxicants and 9 non-cardiotoxicants of mixed 
therapeutic indications facilitated compound clustering by mechanism of action, scoring of pathway 
activities related to cardiomyocyte contractility, mitochondrial integrity, metabolic state, diverse stress 
responses and the prediction of cardiotoxicity risk. The combination of ScreenSeq, HCI and CaT provided 
a high cardiotoxicity prediction performance with 89% specificity, 91% sensitivity and 90% accuracy.
Conclusions: Overall, this study introduces mechanism-driven risk assessment approach combining 
structural, functional and molecular high-throughput methods for pre-clinical risk assessment of novel 
compounds.
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1. Introduction

Cardiotoxicity remains a predominant cause of pre-clinical and 
clinical drug failure [1,2]. Consequently, pre-clinical strategies 
with better predictive power need to be developed to guar-
antee the efficacy and safety of novel pharmaceutical drugs on 
cardiovascular functions, thus reducing later-stage attrition. 
Cutting-edge techniques and non-clinical models that closely 
represent the in vivo situation are needed to de-risk cardio-
toxicity in early drug discovery and development.

The high incidence of drug-induced cardiotoxicity led to the 
adoption of the International Conference of Harmonization (ICH) 
S7B guideline in 2005, which called for the preclinical evaluation of 
new drug entities on cardiac electrophysiology using in vitro elec-
trophysiology studies (typically human Ether-a-go-go Related- 
Gene (hERG) channel test) and in vivo QT assays in animal models 
[3]. This highly sensitive approach has been successful in reducing 
the percentage of proarrhythmic drug submissions to the U.S. 
Food and Drug Administration (FDA) [4]; however, it comes with 
low specificity and presents some limitations. Not all hERG channel 
blockers, for example, cause QT prolongation or Torsades de 
Pointes (TdP) (e.g. verapamil, due to its concomitant blockade of 

the depolarizing inward calcium current) [5] and, similarly, QT 
prolongation (often via blocking of the hERG channel) does not 
necessarily elicit proarrhythmia (e.g. ranolazine, due to the con-
comitant blockade of the depolarizing late inward sodium current) 
[6,7]. As a result, some valuable drug candidates may have been 
discarded due to false-positive risks or, if approved, their clinical 
use is limited by inappropriate warnings. Consequently, the 
Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative was 
established to develop a new non-clinical safety paradigm, 
intended to move safety pharmacology toward an in silico and in 
vitro approach building on the emergence of new technologies 
such as stem-cell-derived cardiomyocytes [8].

Drug-induced cardiotoxicity can be functional in nature 
(defined as an acute alteration in the mechanical function of the 
myocardium), or it can also develop as a structural change due to 
morphological damage to cardiomyocytes and/or loss of viability 
[9]. In vitro cardiotoxicity screening strategies have predominantly 
focused on the detection of ECG abnormalities and QT interval 
prolongation, however assays that detect structural cardiotoxicity 
have emerged in the recent years, shedding light on the mechan-
isms leading to structural damage [10–12]. Likewise, high- 
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throughput assays that collect transcriptional profiles and evaluate 
pathological pathway activities for drug-induced cardiotoxicity are 
currently limited in the scientific literature. Recent advances in the 
generation and large-scale production of human-induced pluripo-
tent stem cell-derived cardiomyocytes (hiPSC-CMs) and human 
embryonic stem cell-derived cardiomyocytes (hESC-CMs) have 
allowed the development of novel high-throughput in vitro assays 
to detect cardiotoxicity. The utility of hESC-CMs to predict drug- 
induced structural cardiotoxicity was first shown in a high-content 
screening assay by live-cell fluorescent imaging of mitochondrial 
membrane potential (MMP), endoplasmic reticulum (ER) integrity, 
Ca2+ mobilization and membrane permeability combined with 
cellular adenosine triphosphate (ATP), which offered a sensitivity 
and specificity of 74% [13]. Subsequently, other studies have 
demonstrated the amenability of hiPSC-CMs to multi-parametric 
automated assays using both functional (beating activity) and 
structural (e.g. cell viability, reactive oxygen species generation, 
glutathione (GSH) depletion, lipid formation and troponin secre-
tion) readouts for cardiotoxicity prediction [10,11,14–18]. hiPSC- 
CMs have been shown to hold great potential as an in vitro model 
for cardiotoxicity assays since they show fundamental electrophy-
siological and pharmacological characteristics, a cardiac-specific 
transcription profile, gene expression of key ion channels, excita-
tion wave propagation and excitation-contraction coupling 
[19–23].

The aim of this publication was threefold: 1) to develop and 
validate high-throughput ribonucleic acid (RNA) sequencing 
(ScreenSeq) for the detection of alterations in molecular path-
ways in hiPSC-CMs as a new in vitro strategy to predict drug- 
induced cardiotoxicity 2) to demonstrate the feasibility of 
using hiPSC-CMs in structural assays such as high-content 
imaging (HCI) as well as functional assays, such as Ca2+ tran-
sient (CaT) analysis 3) to combine ScreenSeq, HCI and CaT 
analysis to provide a highly accurate cardiotoxicity prediction 
platform, while integrating complementary levels of com-
pound response information and thereby providing a better 
mechanistic understanding of compounds. To this end, hiPSC- 
CMs were dosed with a set of 42 reference compounds typi-
cally cited in the literature for assay validation including 33 
well-known functional and structural cardiotoxicants and 9 
non-cardiotoxicants. Cardiotoxicity was then assessed using a 
high-content imaging (HCI), cellular ATP and Ca2+ transient 
assays, in addition to high-throughput RNA-sequencing 
(ScreenSeq).

2. Materials and methods

2.1. Materials

Human-induced pluripotent stem cell-derived cardiomyocytes 
(hiPSC-CMs) and cell culture media (CD-4) were provided by 
Evotec International GmbH. CD-4 media was prepared using 
Iscove’s modified Dulbecco’s Medium (IMDM) supplemented 
with 10% fetal bovine serum (FBS), 0.1% BioXtra human insulin 
(Sigma Cat. No. I9278) and 0.04% 1-thioglycerol (Sigma Cat. 
No. M6145). Experiments were conducted using two geneti-
cally distinct iPSC lines: EVOiPS0254 and EVOiPS0274. Two 
batches of the iPSC line EVOiPS0274 were also used for repro-
ducibility studies. Both iPS lines were genetically modified to 

harbor a puromycin selection cassette driven by a cardiac- 
specific promotor using a proprietary protocol (puromycin 
concentration for selection was optimized as puromycin resis-
tance varies between different batches). iPSCs were disso-
ciated and aggregated into embryoid bodies for 1 day 
followed by differentiation into cardiomyocytes for a subse-
quent 17 days. After cardiomyocytes were differentiated, EBs 
were dissociated and the differentiated cells were seeded into 
T175 flasks for an additional 10 days for maturation and final 
selection of cardiomyocytes by puromycin treatment. The 
resulting cardiomyocyte preparations were then frozen and 
stored in liquid nitrogen until further use. Compounds were 
purchased from Sigma-Aldrich (Dorset, UK) or Cambridge 
Biosciences and were of the highest purity available.

2.2. Cell culture and compound treatment

hiPSC-CMs were seeded in 384-well plates (Corning® Cat. No.: 
3764) pre-coated with a 0.1 µg/mL fibronectin solution (Sigma 
Cat. No. F1141) in phosphate buffered saline (PBS) containing 
Mg2+ and Ca2+. Fibronectin pre-coated plates were incubated 
at 37°C for 3 h (5% CO2, 95% humidity), after which the coat-
ing was carefully removed using an automated liquid handling 
robot (Bravo Agilent). Subsequently, hiPSC-CMs were seeded 
at 10,000 cells/well and cultured for 10 days in CD-4 media. 
Media was initially refreshed 24 h post-seeding and then, 
every 48 h thereafter, while the cells were in culture. 
Compounds were selected across several therapeutic indica-
tions to cover a broad chemical space and, for assay valida-
tion, included a variety of mechanisms: 12 structural 
cardiotoxicants, 14 functional cardiotoxicants, 7 structural/ 
functional cardiotoxicants and 9 non-cardiotoxicants (see 
Table 1). Top concentrations of compounds were based on 
100 × maximum total human plasma concentrations (Cmax) or 
solubility limit, while the lowest concentrations were lower 
than Cmax or 50 × free concentration, calculated from the 
mean unbound fraction (Table 1). All compounds were dis-
solved in 100% dimethylsulfoxide (DMSO) (stock solutions). 
The stock solutions were further diluted in CD-4 media, and 
cells were dosed in triplicate at an 8-point dose response 
range using a half-log dilution series to achieve a final DMSO 
concentration of 0.5% (v/v). Vehicle controls were dosed with 
0.5% (v/v) DMSO, while positive controls were dosed with 
sunitinib, a functional and structural cardiotoxicant.

2.3. High-content imaging (HCI) and Ca2+ transient (CaT) 
measurements

Upon 10 days culture, hiPSC-CMs were incubated with the 
EarlyToxTM Cardiotoxicity fluorescent dye (Molecular Devices). 
Following a 2-h incubation, hiPSC-CMs were dosed with com-
pounds for 0 h (acute injection) or 24 h. Upon compound 
treatment, fast kinetic fluorescent reading was performed to 
detect individual Ca2+ transient peaks, which provided a multi- 
parametric transient profile (Ex 485 nm/Em 528 nm). The 
following parameters were measured and recorded over a 
12-s period: amplitude, frequency, full peak width, full width 
at half maximum (FWHM), full rise time, rise time from 10%, 
full decay time, decay time to 10%, peak count, peak width at 
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Table 1. Summary of the 42-reference drug set. Table shows Cmax values (µM), estimated free concentrations (µM), tested dose range (µM), approved/withdrawn 
year, clinical use and mechanism of action with primary targets.

Compound
Cmax 

(µM)

Estimated free 
concentrations 

(µM)

Tested 
dose range 

(µM)

First 
approved- 
withdrawn Clinical use

Mechanism of action with primary 
targets

Non- 
cardiotoxicants

Acetaminophen 150 121 1.6–4000 1950-NA Central Nervous 
System agent

Cyclooxygenase inhibitor

Acetylsalicylic acid 6.68 3.77 0.4–1000 1899-NA Anti-inflammatory 
agent

Cyclooxygenase inhibitor

Acyclovir 2.87 2.43 0.4–1000 1982-NA Antiviral agent Thymidine kinase inhibitor
Amoxicillin 10.6 8.89 0.12–300 1973-NA Antibiotic Penicillin-binding protein inhibitor
Buspirone 0.01 0.001 0.004–10 1986-NA Anxiolytic Serotonin (5-HT1A) agonist
Enalapril 0.83 0.37 0.04–100 1985-NA Cardiovascular agent Angiotensin-converting-enzyme (ACE) 

inhibitor
Furosemide 4.45 0.074 0.2–500 1966-NA Cardiovascular agent Sodium-potassium-chloride 

cotransporter (NKCC2) inhibitor
Sildenafil 0.24 0.009 0.016–40 1998-NA Sexual dysfunction Phosphodiesterase 5 (PDE5) inhibitor
Tolbutamide 217 9.95 2.4–6000 1957-NA Antidiabetic Sulfonylurea receptor 1 inhibitor

Cardiotoxicants Amitriptyline 14.5 0.83 0.024–60 1961-NA Antidepressant Serotonin-norepinephrine reuptake 
inhibitor

Atenolol 2.9 2.78 0.1–250 1975-NA Cardiovascular agent β1-adrenergic receptor antagonist
Bepridil 3.18 N/A 0.012–30 1990-NA Cardiovascular agent Ca2+ and Na+ channel blocker
Cisapride 0.11 0.028 0.004–10 1980–2000 Gastrointestinal agent Serotonin-4 (5-HT4) receptor agonist
Digoxin 0.0035 0.003 0.00004– 

0.1
1954-NA Cardiovascular agent Na+/K+ ATPase inhibitor

Diltiazem 0.3 0.058 0.02–50 1982-NA Cardiovascular agent L-type Ca2+ channel blocker
Dobutamine 1.4 0.32 0.04–100 1978-NA Cardiovascular agent β1-adrenergic agonist
Dopamine 0.12 0.12 0.008–20 1974-NA Central Nervous 

System agent
Dopamine receptor agonist

Epinephrine 0.002 0.002 0.0004–1 1901-NA Anaphylaxis Adrenergic and dopamine D4 receptor 
agonist

Levosimendan 0.132 0.003 0.02–50 2000-NA Cardiovascular agent Cardiac troponin C binding agent, ATP- 
sensitive potassium channels opener

Lidocaine 12.5 3.90 0.5–1250 1948-NA Central Nervous 
System agent

Na+ channel blocker and epidermal 
growth factor receptor (EGFR) 
inhibitor

Nifedipine 0.28 0.011 0.02–50 1981-NA Cardiovascular agent L-type Ca2+ channel blocker
Propranolol 0.2 0.027 0.08–200 1967-NA Cardiovascular agent β-adrenergic receptor blocker
Sotalol 12.3 9.71 0.5–1250 1992-NA Cardiovascular agent β-adrenergic receptor blocker, hERG 

blocker
3’-azido-3’- 

deoxythymidine 
(AZT)

44.9 N/A 08–2000 1987-NA Antiviral agent Nucleoside reverse transcriptase 
inhibitor (NRTI)

Amphotericin b 62.9 5.39 0.06–165 1958-NA Antifungal Binds with ergosterol
Bortezomib 0.30 0.050 0.02–50 2003-NA Antineoplastic agent 26S proteasome inhibitor
Clozapine 0.25 0.013 0.02–50 1989-NA Antipsychotic Inhibitor of dopamine D2 and serotonin 

2A receptors
Cyclophosphamide 153 132.7 1.6–4000 1959-NA Antineoplastic agent,  

immunosuppressant
DNA cross-linking

Dasatinib 0.59 0.030 0.016–40 2006-NA Antineoplastic agent Inhibitor of kinases BCR-ABL, SCR, 
EPHA2, c-KIT and PDGFRβ

5-Fluorouracil 4.6 2.95 0.2–500 1962-NA Antineoplastic agent DNA cross-linking, thymidylate synthase 
inhibitor

Imatinib 4 0.23 0.03–75 2001-NA Antineoplastic agent Inhibitor of BCR-ABL tyrosine kinase, 
PDGF and SCF kinases

Mitomycin c 7.1 N/A 0.4–1000 1974-NA Antineoplastic agent DNA cross-linking
Mitoxantrone 3.3 0.83 0.004–10 1987-NA Anti-neoplastic agent DNA cross-linking, DNA topoisomerase II 

inhibitor
Rofecoxib 0.03 0.004 0.01–25 1999–2004 Anti-inflammatory 

agent
Cyclooxigenase-2 inhibitor

Rosiglitazone 1.44 0.003 0.08–200 1999–2010 
(EMA)

Anti-diabetic PPARG agonist

Amiodarone 1.27 0.008 0.016–40 1985-NA Cardiovascular agent hERG, Na+, and Ca2+ channel blocker; 
noncompetitive α- and β-adrenergic 
inhibition

Doxorubicin 11.7 2.97 0.02–50 1974–NA Antineoplastic agent DNA cross-linking, DNA topoisomerase II 
inhibitor

Idarubicin 0.12 0.009 0.008–20 1990-NA Antineoplastic agent DNA cross-linking, DNA topoisomerase II 
inhibitor

Isoproterenol 0.008 0.006 0.004–10 1948-NA Cardiovascular agent Nonselective β adrenoreceptor agonist 
and TAAR1 agonist

Lapatinib 1.70 0.017 0.008–20 2007-NA Antineoplastic agent EGFR and HER2 receptor tyrosine kinases 
inhibitor

Sunitinib 35.12 N/A 0.03–75 2006-NA Antineoplastic agent Multi-targeted receptor tyrosine kinase 
inhibitor (PDGFR, VEGFR, FLT, KIT, CSF- 
1 R)

Verapamil 0.5 0.054 0.02–50 1978-NA Cardiovascular agent L-type Ca2+, channel blocker
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10%, peak width at 50%, peak spacing. Readings were taken 
on a Cytation 3 Cell Imaging Multi-Mode Reader (BioTek), and 
raw data was analyzed using a multiscale-based peak detec-
tion (AMPD) method as described by Scholkmann et al. [24]. 
High-content imaging (HCI) was performed after the Ca2+ flux 
measurements using an ArrayScan® HCI reader 
(ThermoScientific) and a series of fluorescent dyes to quantify 
cell count, nuclear size, deoxyribonucleic acid (DNA) structure 
(Hoechst), calcium homeostasis (EarlyToxTM), mitochondrial 
mass and mitochondrial membrane potential 
(Tetramethylrhodamine, ethyl ester, TMRE). Finally, cellular 
ATP was measured to assess gross cytotoxicity using the 
CellTiter-Glo Cell Viability Assay (Promega) as per manufac-
turer’s instructions. Minimum effective concentrations (MEC) 
and AC50 values were calculated for each parameter and were 
used for the calculation of prediction metrics (sensitivity, spe-
cificity, and accuracy).

2.4. Whole genome high-throughput transcriptomics 
(ScreenSeq)

High-throughput transcriptomics was performed using 
Evotec’s (semi)-automated ScreenSeq platform. Cell lysis was 
performed in a 384-well plate format followed by well-specific 
labeling of samples. Purified mRNAs were labeled with a 
unique molecular identifier (UMI). After pooled cDNA synth-
esis, adapters containing Illumina’s unique dual indexes were 
attached for final library preparation and sequenced on a 
NovaSeq 6000 system. Transcriptomic profiling was performed 
in batches of 382 samples. Each batch contains 22 negative- 
control (i.e. DMSO-treated) samples and 15 blocks of com-
pound-treated samples. Each block included eight compound 
concentrations, each in triplicate. Reads were mapped to the 
human genome (genome-build GRCh38.p13 – accession 
GCA_000001405.28) using Spliced Transcripts Alignment to a 
Reference (STAR) [25] (version 2.7.9a). Multi-mapped reads, 
reads with mapping to intergenic regions (with respect to 
Ensembl gene annotation information version 104) and reads 
with ambiguous mapping location (i.e. location associated 
with more than one gene) were discarded, and UMI-based 
deduplication was performed. Log-scaling of the resulting 
counts used CP10K (counts per 10 thousand) as scaling and 
1 as pseudo-count unless indicated otherwise.

Differential expression analysis was performed separately 
for each sequencing batch, and – within batch – separately for 
each individual comparison (i.e. compound in each concentra-
tion vs DMSO) using DESeq2 [26] [DESeq2] (version 1.34) R 
package. To increase robustness by excluding individual out-
liers while keeping the procedure identical for all sequencing 
batches, 20 DMSO-treated samples were used as a control in 
these analyses for each batch, and the two with the lowest 
correlation with batch-specific averaged DMSO profiles were 
excluded. Here, Pearson correlation coefficients and log-scaled 
expression profiles were used, and a robust version of aver-
aging was applied: for each gene, three lowest and three 
highest values were excluded, and the arithmetic mean was 
calculated for the remaining 16 values.

For triplicates of compound-treated samples, the following 
exclusion criteria were applied. Firstly, for each sequencing 

batch, the lower quartile of total counts for DMSO-treated 
samples was calculated, and a sample was excluded if it had 
total counts lower than one-fourth of this lower quartile. 
Secondly, for each sample in a triplicate, a Pearson correlation 
coefficient was calculated between the log-scaled expression 
profiles of this sample and each of the other two samples; 
additionally, a correlation coefficient between the expression 
profiles of this sample and an averaged profile of the other 
two samples was calculated. The maximum of these three 
numbers was used to quantify the consistency of a sample 
with its replicates. A sample was excluded if this quantification 
fell below 0.975.

2.5. Sample clustering

Principal Component Analysis (PCA) was performed using R 
package irlba (version 2.3.3), with centering and no scaling; 
the analysis was limited to 500 top features. For comparison of 
DMSO samples, log-scaled expression levels were used as 
feature values, and feature ranking was based on variance (i. 
e. 500 genes with the highest variability of expression level 
were selected). For studying compound effects, replicates 
were treated as one data point, and log-fold-changes identi-
fied within differential expression analysis were used as fea-
ture values. Feature selection in this case was based on the 
10th percentile of adjusted p-values associated with a gene in 
all performed comparisons (one comparison for each com-
pound-concentration pair): genes with minimum (i.e. closest 
to zero) value of this percentile were selected.

2.6. Pathway enrichment

GO (gene ontology release 2020–09-10; GO term annotation 
for genes: UniProt release 2020_05) and WikiPathway (release 
20,210,410) enrichment analyses used genes with adjusted p- 
values below 0.05 (and no fold-change threshold) as sets of 
differentially expressed genes; Fisher’s exact test (or, equiva-
lently, hypergeometric test) was applied to identify enriched 
pathways and GO terms. For GO, the analysis used the pack-
age evoGO (version 0.1.0) to deprioritize terms that are redun-
dant or unspecific.

2.7. Minimum effective concentration analysis of 
pathway responses

For each WikiPathway and compound, the lowest concen-
tration associated with significant enrichment (p < 0.05) 
was determined. For each compound concentration with a 
significant pathway enrichment, enrichment consistency at 
higher compound concentrations for the same pathway was 
tested; a pathway was considered to be consistently signifi-
cant across concentrations, if the median of log10-trans-
formed p values at the given concentration and all higher 
concentrations was below log10 (0.05). The MEC was deter-
mined to be the lowest compound concentration with con-
sistent pathway enrichment and used for the calculation of 
prediction metrics (sensitivity, specificity and accuracy). 
Pathway directionality was determined from the fraction of 
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up- and down-regulated pathway genes at the MEC and 
was visualized with the ComplexHeatmap R package (ver-
sion 2.10.0).

2.8. hiPSC-CMs quality control with human protein 
atlas expression data

Single-cell data and cell-type gene expression specificity data 
were obtained from the Human Protein Atlas (HPA) (version 
22) [27]. Signature genes were selected from cardiomyocyte 
cell type enriched and group enriched genes with a least 
baseline expression of 15 transcripts per million (TPM), and 
a least expression fold-change of 10 in comparison with the 
median of all other cell types. A transcriptome-wide quantile 
regression model was generated from log2 transcripts per 
million from ScreenSeq data against HPA data. Gene expres-
sion differences between hiPSC-CMs and HPA cardiomyocytes 
were calculated as regression residuals. A cardiomyocyte 
expression score was then calculated as the difference 
between the mean residuals of signature and non-signature 
genes with a least baseline expression of 15 TPM. Genes were 
grouped by selected evoGO-simplified GO terms with recur-
sive inclusion of child terms and visualized with the 
ComplexHeatmap R package.

2.9. ScreenSeq cluster signature analysis

The Seurat R package (version 4.0.5) was used for comparison 
clustering, signature gene signature identification and dimension 
reductions. Genes significant in at least three comparisons in the 
complete dataset were used as background. Log2 fold-changes vs. 
intra-plate DMSO samples were used as input. PCA was applied to 
all features, and comparison neighbors were identified considering 
the first 20 principal components (k = 9). Clusters were identified 
by shared nearest neighbor modularity optimization-based clus-
tering (resolution = 1) and visualized by Uniform Manifold 
Approximation and Projection (UMAP). Signature gene identifica-
tion was based on the Wilcoxon Rank Sum test (p < 0.05), by 
comparing each cluster with the pool of all other clusters, and 
with the very low differentially expressed gene (DEG) clusters 1 and 
2. Signature features were filtered for an absolute fold-change of at 
least 1.25, and a log2 fold-change with at least one standard 
deviation distance from 0. Enrichment of WikiPathways per cluster 
signature was performed with the clusterProfiler R package (ver-
sion 4.2.2). For significant pathways (pBenjamini-Hochberg < 0.01) 
represented by at least two features in the signature, the regula-
tion direction was calculated as a fraction of up-regulated vs. total 
regulated genes. Pathway similarity was calculated as pairwise 
Jaccard index, and the rrvgo R package (version 1.6.0) was used 
to derive two-dimensional space coordinates.

2.10. Software

RStudio Server (2022.02.0 Build 443) running R (version 4.1.2, 
2021–11-01) on an x86_64-conda-linux-gnu (64-bit) platform, 
Inkscape (version 1.1).

3. Results

3.1. Cardiotoxicity assessment with Ca2+ transient and 
high-content imaging assays

High-content imaging (HCI) and Ca2+ transient (CaT) analysis 
of 33 cardiotoxicants and 9 non-cardiotoxicants (Table 1) was 
used to validate the suitability of human-induced pluripotent 
stem cell-derived cardiomyocytes (hiPSC-CMs) for high- 
throughput cardiotoxicity prediction. Cardiotoxicants tested 
included those that caused either functional or structural 
cellular changes and those that elicited both outcomes 
(Tables 2,3 and 4), and hiPSC-CMs were dosed in triplicate 
at an 8-point dose response range covering total human 
plasma Cmax concentrations (Table 1). CaT analysis (peak 
amplitude, frequency, width and decay time) was performed 
after acute and 24 h treatments to monitor functional altera-
tions, while HCI analysis (cell count, cellular ATP, mitochon-
drial mass, MMP, cellular Ca2+ levels, DNA structure and 
nuclear size) was performed after 24 h treatments to assess 
structural changes [28].

CaT analysis was validated with Ca2+ channel blockers, negative 
chronotropic adrenergic antagonists, positive chronotropic adre-
nergic agonists and QT-prolonging tyrosine kinase inhibitors (TKIs), 
which caused the expected reduction of Ca2+ wave amplitude, 
decreased frequency, increased frequency and increased peak 
width, respectively (Supplementary Figure S1A-D). Anthracyclines 
depleted Ca2+ waves in a time-dependent manner 
(Supplementary Figure S1E), which is consistent with their struc-
tural mechanism of action (MoA) and leads to a cumulative loss of 
functionality.

Dose response curves were applied to all individual assay read-
outs to determine the minimum effective concentration (MEC, 
mean value exceeding the vehicle control limits) for each readout 
in relation to Cmax (Figure 1(a), Supplementary Data 1). 
Cardiotoxicity predictions using dynamic concentration thresholds 
as multiples of Cmax were performed based on HCI readouts, CaT 
readouts or the combination of both assay types (Figure 1(b-c), 
Supplementary Data 2). The highest cardiotoxicity predictions 
were obtained using concentration thresholds between 10x and 
25x Cmax, by either the combination of CaT and HCI, or CaT alone. 
The combination of CaT and HCI with a fixed concentration thresh-
old of 10x Cmax resulted in 100% specificity (true negative: 9/9), 
79% sensitivity (true positive: 26/33), and 83% accuracy. Elevated 
concentration thresholds allowed the true positive classification of 
rosiglitazone (CaT: 12x Cmax), epinephrine (CaT: 13x Cmax), and 
rofecoxib (HCI: 23x Cmax), but resulted in false-positive classification 
of sildenafil (HCI: 14x Cmax, CaT: 18x Cmax). Although CaT analysis 
was predominantly superior over HCI, integration of the HCI 
method in the prediction improved the positive classification of 
idarubicin (HCI: below 1x Cmax, CaT: 14x Cmax) and facilitated the 
positive classification of rofecoxib (Figure 1(a)). Acute CaT analysis 
was more efficient at the detection of positive chronotropic com-
pounds (epinephrine and isoproterenol) than 24 h CaT analysis, 
whereas 24 h CaT analysis correctly classified mitomycin C and 
bortezomib, which were classified as false negative in the acute 
treatment. Overall, the highest sensitivity (88%) and accuracy 
(88%) were obtained by combining HCI and CaT (acute and 24 h) 
at a 25x Cmax concentration threshold with a single false-positive 
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Table 2. Summary of functional cardiotoxicants, reported functional effects (-ve: negative; +ve: positive) and in vivo cardiovascular effects. CHF: congestive heart 
failure, LVEF: left ventricular ejection fraction, RVEF: right ventricular ejection fraction, TdP: torsades de Pointes.

Compound Functional effects
Functional effects 

reference In vivo cardiovascular effects
Cardiac effects 

reference

Amitriptyline -ve inotrope, -ve chronotrope, 
-ve dromotrope

[29] Acute myocarditis, dilated cardiomyopathy, QT prolongation, CHF [30–34]

Atenolol -ve inotrope, -ve chronotrope, 
-ve dromotrope

[35,36] Cardiac failure, bradycardia, hypotension, QT shortening [17,144,149]

Bepridil -ve inotrope, -ve chronotrope, 
-ve dromotrope

[37] Ventricular arrhythmia, TdP, QT prolongation [34,38,39]

Cisapride +ve inotrope [40] Ventricular tachycardia, ventricular fibrillation, TdP, QT prolongation, 
cardiac arrest and sudden death

[34,41–43]

Digoxin +ve inotrope, -ve chronotrope, 
-ve dromotrope

[44,45] Cardiac rhythm disturbances, atrioventricular block, QT prolongation 
and shortening

[46–49,149]

Diltiazem -ve inotrope, -ve chronotrope, 
-ve dromotrope

[37,50] Bradycardia, hypotension, QT shortening [17,18,37,50,51,144]

Dobutamine +ve inotrope, +ve chronotrope [52] Increase in heart rate, QT prolongation and shortening [34,53,54,144,149]
Dopamine +ve inotrope, +ve chronotrope, 

+ve dromotrope
[52,55,56] Cardiac arrhythmias, hypotension, angina pain [57]

Epinephrine +ve inotrope, +ve chronotrope, 
+ve dromotrope

[56,58] Increased heart rate, increased RVEF and LVEF [59,60]

Levosimendan +ve inotrope [61] Increased heart rate, systolic blood pressure, fractional shortening 
and ejection fraction

[62]

Lidocaine -ve inotrope, -ve chronotrope, 
-ve dromotrope

[63] Bradycardia, cardiac arrest, QT shortening [64,65,149]

Nifedipine -ve inotrope, -ve chronotrope, 
-ve dromotrope

[37,50] Hypotension, increased angina, myocardial infarction, CHF (rare) [66,67]

Propranolol -ve inotrope, -ve chronotrope, 
-ve dromotrope

[36] Bradycardia, cardiac arrest, LV dysfunction, hypotension, QT 
prolongation

[15,16,49,68]

Sotalol -ve inotrope, -ve chronotrope, 
-ve dromotrope

[36] Life threatening ventricular tachycardia associated with QT 
prolongation, TdP

[11,16,49,68,69,142]

Table 3. Summary of structural cardiotoxicants, proposed mechanisms of cardiac toxicity and in vivo cardiovascular effects. CHF: congestive heart failure, ER: 
endoplasmic reticulum, LVEF: left ventricular ejection fraction, TdP: torsades de Pointes, LVD: left ventricular dysfunction.

Compound Proposed mechanisms of cardiac toxicity

Structural 
effects 

reference In vivo cardiovascular effects

Cardiac 
effects 

reference

3’-azido-3’- 
deoxythymidine 
(AZT)

mtDNA and L-carnitine depletion, oxidative stress, 
inhibition of mitochondrial bioenergetic 
machinery

[70,71,153] Cardiomyopathy, QT prolongation [72,73]

Amphotericin b Loss of ER integrity [140] Arrhythmia, atrial fibrillation, bradycardia, cardiac arrest, 
cardiomegaly, QT prolongation

[74–77]

Bortezomib Induction of caspase-3/7 activity, oxidative stress [78,79] Arrhythmia, CHF, decreased LVEF, QT prolongation, 
hypotension

[80,81]

Clozapine IgE-mediated pathways, cytokine-driven responses 
and oxidative stress

[82] Myocardial ischemia, myocarditis, arrhythmia, QT 
prolongation, TdP, cardiomyopathy

[83–85]

Cyclophosphamide Toxic metabolites cause depletion of antioxidants/ 
ATP levels, altered contractility, 

damaged endothelium and enhanced pro- 
inflammatory/pro-apoptotic activities

[86,155] Acute cardiac toxicity, CHF, myocarditis, myocardial 
necrosis, QT prolongation

[87,88]

Dasatinib Inhibition of VEGF signaling and RAF/MEK/ERK pro- 
survival pathway, ER stress, mitochondrial ROS 
production

[89,90] QT prolongation, CHF, LVD, myocardial infarction, 
cardiomyopathy, arrhythmia, cardiomegaly, pulmonary 
artery hypertension, pleural effusion

[91–94]

5-Fluorouracil Citrate accumulation, depletion of high-energy 
phosphates, protein kinase C-mediated 
vasoconstriction, myocardial and endothelial cells 
apoptosis

[95] Myocardial ischemia, CHF, coronary vasospasm, QT 
prolongation, (supra)ventricular tachycardia, LVD, 
cardiac fibrillation, arrhythmia, angina, myocardial 
infarction, cardiomyopathy

[88,96–99]

Imatinib Mitochondrial toxicity, activation of ER stress, 
reduction of cellular ATP

[100,145] Arrhythmias, CHF, decreased LVEF, edema, severe fluid 
retention, QT prolongation

[94,101,138]

Mitomycin c Enhancement of the cardiac damage incurred by 
prior doxorubicin therapy (synergistic effect), 
oxidative stress

[102,103] CHF [102,104]

Mitoxantrone Mitochondrial toxicity, ROS production [105] CHF, decreased LVEF, tachycardia, arrhythmia [106,107]
Rofecoxib Lipid peroxidation, oxidative damage [108,109] Cardiovascular thrombotic events, sudden death, unstable 

angina, ischemic attack/stroke, QT shortening
[110,149]

Rosiglitazone Oxidative stress-induced mitochondrial dysfunction [111,112] CHF, myocardial infarction [113–115]
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prediction (Figure 1(c)). Together, our data show that the combi-
nation of CaT at two time points (acute and 24 h) and HCI provides 
the best sensitivity for cardiotoxicity prediction.

3.2. Establishment of high-throughput transcriptomics 
for cardiotoxicity risk assessment

To explore high-throughput transcriptomics for cardiotoxicity 
risk assessment, the transcriptional responses of hiPSC-CMs to 
24 h treatments with a structural cardiotoxicant (imatinib), a 
functional cardiotoxicant (lidocaine), a combined structural 
and functional cardiotoxicant (sunitinib), and a non-cardiotox-
icant (enalapril) were characterized by high-throughput RNA 
plate sequencing (ScreenSeq) (Figure 2(a), Supplementary 
Data 3). hiPSC-CMs derived from three independent hiPSCs 
were cultured on separate 384-well plates and dosed in tripli-
cate at an 8-point dose response range or treated with DMSO 
(control). For the assessment of positional and plate effects, 
three intra-plate treatment repetitions were performed on 
each plate, and three replicate plates were processed for the 
first hiPSC-CM batch ScreenSeq identified transcripts for 6000 
to 10,000 genes per sample with at least five unique molecular 
identifier (UMI) counts, without significant batch or plate 
effects (Figure 2(b)). Principal component analysis (PCA) of 
control samples (DMSO) revealed that the hiPSC-CM origin 
(hiPSC batch) was the main contributor to variance in baseline 
gene expression, whereas there was no observed technical 

plate effect (see plates 1–3) (Figure 2(c)). Cardiomyocyte (CM) 
signature genes from the Human Protein Atlas [137] were 
expressed at similar levels in hiPSC-CMs from different origins, 
including CM-specific components of contractile fibers, mito-
chondrial and membrane proteins such as gap junction sub-
units and transporters (Supplementary Figure S2A-E). Hence, 
all tested hiPSC-CMs were similarly CM-like despite the 
observed batch effects on sample clustering. The three cardi-
otoxicants induced reproducible dose response curves of 
DEGs (Figure 2(d), Supplementary Data 4) and dose response 
trajectories in PCA plots (Figure 2(e)) across hiPSC-CM batches 
and assay plates, whereas enalapril elicited nearly no transcrip-
tional response. Sunitinib, lidocaine and imatinib altered path-
ways related to hiPSC-CM identity and functionality, 
mitochondrial, cholesterol and glycolytic metabolism, protein 
folding and turnover stress responses and signaling pathways 
relevant for hiPSC-CM viability (Figure 2(f), Supplementary 
Data 5, 6). This is in agreement with the well-characterized 
effects of sunitinib and imatinib on mitochondrial integrity 
[138,139] these structural toxicants, but not lidocaine, also 
altered mitochondrial pathways. Technical variability was 
observed only at the highest imatinib concentration due to 
severe cytotoxicity, and samples with compromised quality 
due to viability loss were excluded from pathway enrichment. 
In summary, ScreenSeq facilitates integrated model system 
validation and characterization of cardiotoxic dose responses 
in hiPSC-CMs.

Table 4. Summary of structural/functional cardiotoxicants, proposed mechanisms of structural cardiotoxicity, reported functional effects (-ve: negative; +ve: positive) 
and in vivo cardiovascular effects. CHF: congestive heart failure, ER: endoplasmic reticulum, MMP: mitochondrial membrane potential, LVEF: left ventricular ejection 
fraction, TdP: torsades de Pointes.

Compound Proposed mechanisms of structural toxicity

Structural 
effects 

reference
Functional 

effects

Functional 
effects 

reference Cardiovascular effects
Cardiac effects 

reference

Amiodarone Loss of ER integrity and cell viability, MMP 
disruption

[140] -ve inotrope, 
-ve 
chronotrope, 

-ve 
dromotrope

[150] Arrhythmia, heart 
block, sinus 
bradycardia, CHF, 
ventricular 
fibrillation

[11,13]

Doxorubicin Mitochondrial toxicity, lipid peroxidation, oxidative 
stress, loss of ER integrity and cell viability, MMP 
disruption

[116,117,140] Biphasic 
inotropic 
effects

[118] CHF, decreased LVEF, 
sinus tachycardia, 
myocarditis, QT 
prolongation, 
cardiomyopathy

[116,117,119–121]

Idarubicin Mitochondrial toxicity, oxidative stress, loss of ER 
integrity and cell viability, MMP disruption

[122,140] -ve inotrope [123] CHF, arrhythmia, 
cardiomyopathy, 
decreased LVEF, QT 
prolongation

[88,120,122]

Isoproterenol Oxidative stress [124–126] +ve inotrope, 
+ve 
chronotrope, 
+ve 
dromotrope

[52,127,128] Tachycardia, 
palpitations, 
ventricular 
arrhythmias, 
myocarditis

[129]

Lapatinib Disruption of cardiomyocyte survival via EGF 
signaling inhibition, loss of ER integrity and cell 
viability, MMP disruption

[130,140] -ve inotrope [131] Decreased LVEF, QT 
prolongation

[90,130,132,133]

Sunitinib Disruption of cardiomyocyte survival via VEGF 
signaling inhibition, disruption of energy 
homeostasis, lipid accu-mulation, mitochondrial 
damage, loss of ER integrity

[14,140,141] -ve inotrope [14,131,134] Decreased LVEF, CHF, 
QT prolongation, 
TdP, 
cardiomyopathy

[11,14,135,136,141]

Verapamil Lipid accumulation [11] -ve inotrope, 
-ve 
chronotrope, 
-ve 
dromotrope

[37,50,144,151] CHF, pulmonary 
edema,  
hypotension, 
ventricular 
fibrillation

[11,17,68,144]
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3.3. High-throughput transcriptomics cardiotoxicity 
screening with ScreenSeq

ScreenSeq technology was applied for cardiotoxicity screening 
of the compounds tested by CaT and HCI (Figure 1), focusing 
on the 24 h treatment (Supplementary Data 3). Compound- 
induced differential gene expression was calculated in com-
parison with DMSO-treated controls. Cardiotoxicants had a 
stronger effect on differential gene expression than non-car-
diotoxicants at comparable concentrations in relation to Cmax 

values (Figure 3(a), Supplementary Data 7). Shared nearest 
neighbor clustering by gene fold-changes vs. DMSO-treated 
controls and UMAP representation segregated compound 
treatments into 13 clusters (Figure 3(b-d), Supplementary 
Figure S3, Supplementary Data 8). Most non-cardiotoxicants 

and low concentrations of cardiotoxicants, both associated 
with very low DEGs, clustered separately from the majority of 
cardiotoxicant treatments (clusters 1, 2). TKIs (cluster 3), α/β- 
adrenergic agonists (cluster 5) and DNA-damaging agents 
(clusters 11, 12) were grouped according to the distinct 
modes of action of their respective compound classes. A 
mixed group of compounds targeting various channels and 
receptors established a cluster group (clusters 7–9), in which 
each individual cluster was not strictly associated with the 
primary compound target. Three compound-specific clusters 
were formed by sunitinib (cluster 10), amphotericin b (cluster 
6b) and the proteasome inhibitor bortezomib (cluster 13). 
Mixed cardiotoxicants and non-cardiotoxicants with weak 
effects on gene expression were dispersed across clusters 4 

Figure 1. Characterization of hiPSC-CM compound responses with HCI and CaT assays. a) Compound response map. Compounds are shown in columns grouped by 
cardiotoxicity. Assays readouts are shown in rows grouped by assays system and treatment duration. The MEC and the response direction (blue: up, red: down) were 
determined for each readout. MECs below 10x or 25x Cmax are indicated by intense or light shading, respectively. b) Cardiotoxicity classification metrics. Compounds 
were classified as cardiotoxicants if the MEC of at least one readout in a) was below a dynamically selected Cmax threshold. Compound cardiotoxicity predictions 
were then classified as false/true positive/negative based on Table 1. Prediction metrics are shown for the use of HCI, CaT or the combination of both assays. c) 
Cardiotoxicity prediction metrics at fixed 10x and 25x Cmax thresholds indicated as vertical gray lines in b).
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Figure 2. Robustness of compound treatment responses in hiPSC-derived CMs. a) Scheme of CM origin and assay design. b) Number of identified genes by 
ScreenSeq with at least five UMI vs. transcript counts, including compound-treated and DMSO samples. c) PCA of normalized gene-level counts of the top 500 
variable genes in DMSO control samples. d) DEGs over Cmax-normalized compound concentrations. Lines represent plate means, and points represent DEGs per 
treatment sector. e) PCA of expression fold-changes of the top 500 variable genes vs. intra-plate DMSO controls. Principle components were calculated with all 
treatments, and individual treatments are highlighted in the individual plots. f) WikiPathway enrichment heatmap of compound treatments. Pathways with 
significant enrichment in at least one treatment below 25x Cmax are displayed. The most significant false discovery rate (FDR) value in the tested concentration range 
is shown for each treatment sector.

EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY 9



and 6. Very high concentrations of several compounds were 
grouped together in a high DEG cluster (10b), potentially 
reflecting a general cell stress response.

HCI and CaT readouts were overlaid on ScreenSeq analysis 
clusters to assess the relation between compound-induced 
phenotypes and transcriptome state (Figure 3(e-f), 

Figure 3. Differential gene expression and comparison clustering in the ScreenSeq transcriptomics cardiotoxicity screen. a) DEGs (fill color) detected per compound (y axis) by 
tested concentrations normalized to Cmax values (x axis). Compounds were grouped by cardiotoxicity classification. b) Shared nearest neighbor clustering and UMAP 
organization by expression fold-changes of all genes regulated in at least three comparisons vs. intra-plate DMSO controls. Treatment conditions associated with each cluster 
are indicated. c-d) Mapping of DEGs (c), representative compounds (d), HCI data (e) and CaT data (f) on the UMAP from B. Fill colors indicate the number of DEGs (c), discrete 
compounds concentrations (yellow = low, red = high), or assay readouts normalized to intra-plate DMSO-treated controls (e, f).
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Supplementary Data 9). For most HCI and CaT readouts, treat-
ments with particularly high or low values were distributed 
across several clusters, showing that the biological states 
interrogated by HCI and CaT were not the major drivers of 
cluster formation. Such readouts were calcium, mitochondrial 
mass, MMP, nuclear size (HCI) and CaT readouts (amplitude, 
frequency, decay time and peak width). Increased contraction 
frequency, for example, mapped to the α/β-adrenergic agonist 
cluster (5), and isoproterenol, an α/β-adrenergic agonist that 
showed no clear frequency increase at 24 h treatment, did not 
localize to this cluster, arguing that cluster 5 is characterized 
by positive chronotropy; however, increased frequency was 
also apparent in the clusters 8 (diltiazem), 9 (verapamil) and 
13 (bortezomib); hence, the impact of positive chronotropy in 
the global transcriptome state is not sufficient to cause con-
dition aggregation into a single cluster. There were several 
exceptions of cluster-specific readouts. First, cell count and 
cellular ATP, correlated readouts of viability, were moderately 
reduced in various clusters, and cell count was severely 
reduced in cluster 10b. Hence, it is likely that a general toxicity 
response associated with loss of viability underlies cluster 10b. 
Second, reduction of ATP in comparison with cell count (HCI), 
indicative of energy depletion, was specific to cluster 10, 
suggesting a contribution of energy depletion to the distinct 
clustering of sunitinib, which is known to suppress mitochon-
drial energy metabolism [14,140,141]. Third, alterations of DNA 
structure (HCI) were highly pronounced in cluster 12, implying 
that structural DNA alterations induced by high concentra-
tions of anthracyclines are a strong contributor of transcrip-
tional identity.

ScreenSeq data clustering grouped compounds targeting ion 
channels and receptors (clusters 7–9), but the exact compound 
grouping suggests that the primary compound target is not the 
major clustering determinant (Figure 3(b)). Specifically, cluster 7 
contained the two active β-adrenergic agonists (sotalol, propra-
nolol), a Ca2+ channel blocker (nifedipine), a Na+ channel blocker 
(lidocaine), and an inhibitor of dopamine D2 and serotonin 2A 
receptors (clozapine). Cluster 8 contained two Ca2+ channel 
blockers (bepridil and diltiazem), one serotonin-norepinephrine 
reuptake inhibitor (amitriptyline) and a serotonin-4 (5-HT4) 
receptor agonist (cisapride). Cluster 9 contained a Ca2+ channel 
blocker (verapamil) and a mixed Na+/Ca2+ channel blocker and 
noncompetitive α/β-adrenergic inhibitor (amiodarone). Hence, 
the four Ca2+ channel blockers contained in our study are seg-
regated into three groups. Despite the primary target diversity, 
most of the compounds cause CaT amplitude depletion and/or 
Ca2+ peak widening, indicating similar functional impairment. 
Signature gene extraction (Supplementary Data 10) and enrich-
ment analysis of signature genes (Figure 4, Supplementary 
Figure S4, Supplementary Data 11) revealed that clusters 7–9 
were characterized by largely overlapping biological responses: 
repression of glycolytic metabolism and mitochondrial respira-
tion machinery, and elevated expression of DNA damage 
response pathways, and they differed in particular response 
pathways (7: glycogen metabolism, 8: TGF-β signaling and focal 
adhesion components, 9: cholesterol and heat shock proteins). 
Cluster 10 (sunitinib) was distinct by the absence of DNA damage 
response regulation, but shows a pronounced repression of 

additional mitochondrial components and induction of sterol 
regulatory element-binding protein (SREBP)-mediated choles-
terol biosynthesis. The low viability/ATP-associated sub-cluster 
10b was enriched in terms related to cell death (p53 pathway, 
ferroptosis) and processes indicative of low energy state (autop-
hagy, AMPK signaling). The α/β-adrenergic agonist cluster (5) 
showed an opposite pathway regulation of the adrenergic 
antagonist-containing cluster (7), with a pronounced induction 
of glycolytic metabolism. The anthracycline/DNA damage clus-
ters (11, 12) were different in terms of pathway regulation: while 
the low anthracycline concentration cluster 11 showed elevated 
activity of genotoxicity pathways, the high anthracycline concen-
tration cluster 12 also exhibited an induction of mitochondrial 
respiratory chain components, mitochondrial metabolic pro-
cesses (TCA cycle, fatty acid β-oxidation) and an induction of 
glycolytic metabolism, which is consistent with an adaptive 
response to impaired mitochondrial functionality. The protea-
some inhibition cluster (13) showed a compensatory proteasome 
induction. Amphotericin B cluster (6b) regulated unfolded pro-
tein response (UPR), ER stress and fatty acid metabolism path-
ways consistent with membrane stress. The remaining clusters 
showed no (3, 4) or few disperse (6) enriched terms. In summary, 
ScreenSeq complements the HCI and CaT approaches by provid-
ing mechanistic information on compound activities and cellular 
responses.

3.4. Cardiotoxicity prediction with ScreenSeq analysis

The DEGs in compound-treated cells were analyzed for 
pathway enrichment, and MECs for significant pathway 
enrichment, normalized by compound-specific Cmax values, 
were determined (Supplementary Figure S5, Supplementary 
Data 12, 13). Enrichment was simplified by eliminating path-
ways with redundant enrichment pattern, focusing on 
representative physiological and pathological processes 
(Figure 5(a)). The enriched pathways were grouped into 
nine functional clusters (Figure 5(a)). A general cardiomyo-
cyte functional cluster covering contractility and representa-
tive of viability-associated pathways (IL-18 signaling, VEGFR 
signaling) and cardiac disease states was enriched by most 
structural and functional cardiotoxicants at low concentra-
tions. Glycolysis, gluconeogenesis and mitochondrial path-
ways (electron transport chain; ETC, oxidative 
phosphorylation; OXPHOS) were highly responsive to a simi-
lar spectrum of compounds. Specific aspects of mitochon-
drial processes (ETC complex assembly, tricarboxylic acid 
(TCA) cycle, fatty acid beta-oxidation) responded to a smal-
ler subset of compounds. Finally, compound-specific path-
ways with high toxicology relevance included genotoxic 
stress, unfolded protein response, NRF2-mediated oxidative 
stress response and inflammatory response. Selected com-
pounds affected cell cycle and differentiation-related path-
ways and ribosome homeostasis. Overall, both functional 
and structural cardiotoxicants caused more frequent path-
way enrichment than non-cardiotoxicants.

Cardiotoxicity prediction based on pathway enrichment 
MEC values was investigated, with or without inclusion of 
mitochondrial terms (Figure 5(b,c), Supplementary Data 14). 
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The most accurate cardiotoxicity prediction was obtained 
without mitochondrial terms and a concentration threshold 
between 20x and 25x Cmax (true negative: 9/9, true positive: 
27/33, specificity: 100%, sensitivity: 82%, accuracy: 86%). 
Reduction of the concentration threshold to 10x Cmax reduced 

the accuracy by false-negative classification of epinephrine. 
Inclusion of mitochondrial terms reduced the specificity by 
false-positive classification of acetaminophen. Mitochondrial 
terms were not required for the correct classification of any 
of the cardiotoxicants. A small group of cardiotoxicants 

Figure 4. Pathway enrichment landscape in ScreenSeq clusters. Gene signatures were identified for clusters from Figure 3(b) by comparison of cluster gene 
expression against the pool of all other clusters, and against the very low DEG clusters (1, 2). Significant WikiPathways were identified (p < 0.01) and organized into 
a similarity space based on the pairwise Jaccard index describing pathway gene intersection. Enrichment results for different clusters are split into facets, and the 
cluster number is shown in the top left corner of each facet. The direction of significantly regulated pathway genes is indicated by the fill color. The pathway 
enrichment significance is indicated by the circle size. The position of all pathways in the two-dimensional space is indicated as gray background points. Pathways 
important for biological interpretation are labeled with simplified names. All pathway enrichment results are shown in Supplementary Figure S4.
GNG: gluconeogenesis, ETC: electron transport chain, OXPHOS: oxidative phosphorylation, TCA: tricarboxylic acid, UPR: unfolded protein response, ER: endoplasmic reticulum, DDR: DNA 
damage response, HSP: heat shock protein, CI/III/IV: respiratory complex I/III/IV, Ub: Ubiquitin. 
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(atenolol, levosimendan, rofecoxib, rosiglitazone, 3’-azido-3’- 
deoxythymidine (AZT), cyclophosphamide) was consistently 
classified as false negative (Figure 5(a)). These cardiotoxicants 
had either a low amount of DEGs in their respective toxicity 
class (atenolol, levosimendan, rofecoxib and AZT) or showed 
DEGs exclusively at the highest tested concentration (rosigli-
tazone, cyclophosphamide) (Figure 3(a)). Comparison of 
ScreenSeq cardiotoxicity prediction with HCI and CaT revealed 
that ScreenSeq facilitated the true positive classification of 
fluorouracil as cardiotoxicants and reduced the MEC of several 
other cardiotoxicants (Figure 6(a)).

4. Discussion

In this study, three high-throughput technologies for cardio-
toxicity prediction were utilized to analyze the mechanistic 
response of 42 pharmaceutical drugs, including 33 cardiotox-
icants on hiPSC-CMs as the in vitro model system for human 
cardiomyocytes. These were HCI with six structural readouts 
and cellular viability, CaT analysis with four functional read-
outs, and the RNA-Seq method ScreenSeq with 6000–10,000 
gene expression readouts per sample. All methods were 
applied after 24 h treatment except for CaT analysis, which 
was also applied after acute treatment to assess immediate 

Figure 5. Cardiotoxicity prediction with ScreenSeq analysis. a) The heatmap indicates if the indicated pathways (rows) are significantly regulated (Fisher exact 
test FDR < 0.05 with concentration consistency filtering) in hiPSC-CMs by the indicated compound treatments (columns). Enrichment by concentrations below 
10x or 25x Cmax are indicated by color with or without asterisk, respectively. The direction of significantly regulated pathway genes is indicated by the fill 
color at the MEC. The top annotation bar indicates the classification of compounds by cardiotoxicity. The side annotation bar indicates pathway grouping by 
biological function. A complete heatmap of all enriched WikiPathways is provided in Supplementary Figure S5. A table for the conversion of simplified 
pathway names to official WikiPathway names is provided in Supplementary Data 6. b) Sensitivity, specificity and accuracy (y axis) of cardiotoxicity prediction 
with varying concentration thresholds (x axis). Significance of any of the pathways in A with (Complete) or without (-Mitochondria) mitochondrial terms were 
used for prediction. c) Cardiotoxicity prediction metrics at fixed 10x and 25x Cmax thresholds indicated as vertical gray lines in b).
GNG: gluconeogenesis, ETC: electron transport chain, OXPHOS: oxidative phosphorylation, TCA: tricarboxylic acid, UPR: unfolded protein response. 
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functional responses. hiPSC-CMs recapitulated expected struc-
tural and functional toxicity mechanisms, validating their use 
as in vitro model system to detect and characterize modes of 
toxicity. Significant cardiotoxicity prediction metrics were 
obtained with a combination of HCI and CaT analysis combin-
ing both assay time points with fixed minimal effective con-
centration thresholds between 10x and 25x Cmax (10x Cmax: 
100% specificity, 79% sensitivity, 83% accuracy; 25x Cmax: 88% 
specificity, 88% sensitivity, 88% accuracy). Independently, CaT 
performed better at cardiotoxicity prediction than HCI, even 
when focusing on structural cardiotoxicants alone, which sug-
gests that, at sufficiently long incubation times, various struc-
tural cardiotoxicants might affect cardiomyocyte functionality 

and be reliably classified as cardiotoxicants by CaT. ScreenSeq 
was established as a robust method to characterize cardiotoxi-
city-related pathway activation and compound mechanism of 
action, with pathway-based cardiotoxicity prediction perfor-
mance comparable to the combination of HCI and CaT analysis 
(10x Cmax: 100% specificity, 79% sensitivity, 83% accuracy; 25x 
Cmax: 100% specificity, 82% sensitivity, 86% accuracy). 
Together, HCI, CaT and ScreenSeq provided the best cardio-
toxicity prediction metrics (10x Cmax: 100% specificity, 82% 
sensitivity, 86% accuracy; 25x Cmax: 89% specificity, 91% sensi-
tivity, 90% accuracy). Future compound set expansions will 
allow the refinement of classification thresholds and the 
establishment of optimal method and readout selections.

Figure 6. Summary of cardiotoxicity prediction. a) Cardiotoxicity prediction results for HCI/CaT and ScreenSeq are derived from Figures 1 and 5 respectively. The 
numbers indicate the concentrations in relation to Cmax at which the respective compounds are classified as positive. b) Sensitivity, specificity and accuracy (y axis) of 
cardiotoxicity prediction with varying concentration thresholds (x axis). Significance of at least one pathway from Figure 5(a) without mitochondrial terms or at least 
one assay readout from Figure 1(a). c) Cardiotoxicity prediction metrics at fixed 10x and 25x Cmax thresholds indicated as vertical gray lines in b).
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Previous studies have also used hiPSC-CMs as an in vitro 
model for cardiotoxicity risk assessment. Pointon et al. showed 
that hiPSC-CMs were suitable to detect drug-induced changes 
in cardiomyocyte contraction by testing 31 inotropic and 20 
non-inotropic compounds using a video-based system to 
detect changes in cell contraction and a calcium transient 
assay. An IC50 value of 50 µM as threshold for the peak 
count parameter reported the optimal sensitivity and specifi-
city of 87% and 70%, respectively, while the same threshold 
for the transient profile parameters reported a sensitivity of 
90% and specificity of 50% [17]. Ando et al. used the multi- 
electrode array system to investigate the effects of 57 drugs 
with various clinical torsadogenic risks on extracellular field 
potentials. Therein, drugs were categorized as high, intermedi-
ate or low risk according to the degree of field potential 
duration prolongation, which was compared to the torsado-
genic risk categorization in CredibleMeds®. A concordance 
analysis of 36 drugs that showed either low or high risk gave 
a sensitivity of 81%, a specificity of 87% and an accuracy of 
83% [142]. Dyballa et al. tested 92 compounds with known 
human cardiac liabilities in a high-throughput Ca2+ transient 
assay at three different time points: 5 min, 30 min and 90 min. 
In their study, a compound showing a significant effect in any 
of the features at any of the time points was classified as 
positive. This resulted in a sensitivity of 58%, specificity of 
55% and accuracy of 57%. In the same study, the zebrafish 
model showed an improved sensitivity of 87%, a difference 
that, according to the authors, could be explained by the 13 
cardiotoxicants not detected by hiPSC-CMs, due to, at least in 
part, metabolic reasons [15]. Among these, three compounds 
were investigated in the present study: doxorubicin, rofecoxib 
and sotalol. Doxorubicin, a structural/functional cardiotoxi-
cant, was correctly identified here in all assay systems using 
both 10x Cmax and 25x Cmax thresholds. Rofecoxib and sotalol, 
a structural and a functional cardiotoxicant, respectively, were 
correctly identified in the HCI assay (25x Cmax threshold) and 
the CaT assay and RNA-seq (10x Cmax and 25x Cmax thresh-
olds), respectively. These results indicate that the toxic effects 
of the named drugs can effectively be detected using hiPSC- 
CMs as an in vitro model. In a more recent study, Palmer et al. 
used hiPSC-CMs in a metabolomics-based assay to identify 

both structural and functional cardiotoxicity. First, they used 
66 drugs evaluated at a single, non-cytotoxic concentration to 
identify biomarkers that could identify functional and struc-
tural cardiotoxicants. Then, 81 drugs (including the original 66 
drugs) were used to develop a model to predict cardiotoxicity 
based on changes in hiPSC-CM metabolism, which looked at 
the perturbation of four metabolites (arachidonic acid, lactic 
acid, 2’-deoxycytidine and thymidine) and cell viability. 
Depending on the metabolite-specific thresholds, the authors 
developed a model trained to maximize balance accuracy 
(BAC-trained model; 83% sensitivity, 90% specificity and 86% 
accuracy) or sensitivity (SEN-trained model; 90% sensitivity, 
79% specificity and 85% accuracy) [143]. Finally, other pub-
lications have looked into the suitability of using hiPSC-CMs in 
cardiac microtissues for the prediction of cardiotoxicity. For 
example, Archer et al. used 3D cardiac microtissues with 
hiPSC-CMs, cardiac endothelial cells and cardiac fibroblasts in 
a high-throughput system to evaluate changes in MMP, endo-
plasmic reticulum integrity and cell viability. In their study, the 
authors tested a total of 29 drugs (15 structural cardiotoxi-
cants and 14 non-structural cardiotoxicants) and reported that 
an IC50 value of 10 μM as a cutoff provided optimal sensitivity 
(73%) and specificity (86%) for the detection of changes in 
cardiac structure. Pointon et al. used a similar model to detect 
drug-induced changes in cardiomyocyte contraction, by test-
ing 29 inotropic and 13 non-inotropic compounds. An IC50 

value of 50 µM as threshold for the peak count parameter 
reported a sensitivity and specificity of 80% and 91%, respec-
tively, for the detection of functional changes in cardiomyo-
cytes [144].

In this study, high-throughput RNA-Seq (ScreenSeq) was 
established for the prediction and mechanistic characteriza-
tion of compound-induced cardiotoxicity, and the synergism 
of ScreenSeq, HCI and CaT in detecting diverse cardiotoxicity 
mechanisms was demonstrated to predict overall cardiotoxi-
city risk. Cardiotoxicity predictions using our combined 
method compare favorably with the predictive value provided 
by other approaches that use hiPSC-CMs (see Table 5). In 
summary, hiPSC-CMs represent an important in vitro model 
system to identify drug-induced structural and functional toxi-
city [11] and this study further validates their use as an in vitro 

Table 5. Cross-comparison of prediction metrics and number of compounds tested (those overlapping with the present study are shown in brackets) with other 
publications that have used hiPSC-CMs as a tool for cardiotoxicity risk assessment using various methods and cutoffs.

Methods and cutoffs used Sensitivity (%) Specificity (%) Accuracy (%) Total compounds (overlapping) Reference

HCI, CaT and ScreenSeq (25 x Cmax) 91 89 90 42 *
HCI and CaT analysis (25 x Cmax) 88 88 88 42 *
ScreenSeq (25 x Cmax) 82 100 86 42 *
HCI, CaT and ScreenSeq (10 x Cmax) 82 100 86 42 *
HCI and CaT analysis (10 x Cmax) 79 100 83 42 *
ScreenSeq (10 x Cmax) 79 100 83 42 *
Peak count (IC50 ≤ 50 µM) 87 70 NR 50 (21) [17]
Transient profile (IC50 ≤ 50 µM) 90 50 NR 50 (21) [17]
MEA system (CredibleMeds®) 81 87 83 36 (6) [142]
CaT assay (any significant effect) 58 55 57 92 (16) [15]
Metabolomics (BAC-trained model) 83 90 86 81 (26) [143]
Metabolomics (SEN-trained model) 90 79 85 81 (26) [143]
ER, MMP & ATP (IC50 ≤ 10 μM) 73 86 80 29 (18) [140]
Peak count (IC50 ≤ 50 μM) 80 91 NR 42 (20) [144]

*The present study, NR = not reported 
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tool for cardiotoxicity prediction using HCI, CaT and high- 
throughput RNA-Seq to interrogate pathway-level cardiotoxi-
city responses and to derive mechanistic insight.

The use of high-throughput RNA-Seq for the prediction and 
characterization of compound-induced cardiotoxicity in an in 
vitro model system was utilized in this study to provide an 
understanding of the underlying mode of action in addition to 
cardiac liability. Deriving insight into cardiotoxicity-related 
pathway activities thereby extends the selected information 
gained from classic HCI and CaT approaches, while providing 
comparable cardiotoxicity prediction performance based on 
pathway activities. The robustness of ScreenSeq was validated 
at several levels. First, read depth was confirmed to be stable 
across sequencing plates with 6000 to 10,000 genes per sam-
ple with at least five unique molecular identifier counts (Figure 
2(b)). Second, the robustness of baseline expression was vali-
dated with inter-plate and intra-plate replicates, showing that 
plate and positional effects are negligible in comparison with 
the baseline transcriptome differences between the different 
iPSC lines or batches (Figure 2(c)). Third, the concentration- 
dependent gene regulation vs. intra-plate DMSO-treated con-
trols was comparable in hiPSC-CMs from different iPSC lines or 
batches (Figure 2(d-f)), allowing the robust analysis of differ-
ential gene expression, sample identity and cardiotoxicity- 
related pathways. Fourth, compounds with similar mechanism 
of action were shown to elicit similar transcriptional states 
(Figure 3(b)) and similar pathway enrichment patterns 
(Figure 4, Figure 5(a)). In the same line, concentration-depen-
dent mechanisms of the same compound were also distin-
guishable as exemplified by distinct clustering of low and high 
concentrations of DNA-damaging agents. Fifth, the direction-
ality of pathway regulation was consistent with compound 
activities, such as the opposite regulation of glycolysis by β- 
adrenergic agonists and antagonists and the induction of 
genotoxic stress responses by genotoxic agents (Figure 5(a)). 
Importantly, pathways robustly regulated by the reference 
cardiotoxicants reflected expected mechanisms of toxicity. 
Sunitinib, a widely reported structural/functional cardiotoxi-
cant, elicited transcriptional responses related to mitochon-
drial alterations, adaptation of energy metabolism, VEGF 
signaling, lipid homeostasis and protein folding (Figure 2(f)), 
which are consistent with its pleiotropic mechanisms of struc-
tural toxicity covered in the literature [14,140]. The structural 
toxicant imatinib, but not the functional toxicant lidocaine, 
elicited similar alterations in mitochondrial pathways [145]. 
Both types of cardiotoxicants consistently altered pathways 
related to general cardiomyocyte functionality, such as the 
striated muscle contraction pathway (Figures 2(f) and 5(a)). 
These general pathways were not affected by non-cardiotox-
icants, indicating that their measurement by ScreenSeq could 
serve as robust readout of a physiological cardiomyocyte 
condition.

Additionally, heterogeneity and differentiation state are 
major sources of experimental variance that need to be con-
sidered in large-scale screens with hiPSC-derived model sys-
tems. Hence, the use of high-throughput RNA-Seq in both 
model system selection and model system quality control 
during screening was demonstrated in this study. By compar-
ing a large panel of signature genes to in vivo expression 

levels, a similar cardiomyocyte identity of hiPSC-CMs from 
different iPSC lines and batches was observed 
(Supplementary Figure S2B-D). Furthermore, ScreenSeq 
allowed the comparison of reference compound responses in 
all hiPSC-CMs despite global gene expression baseline differ-
ences, showing only modest line-specific response differences 
restricted to lipid metabolism (statin, cholesterol, omega-9 
fatty acids) (Figure 2(f)). Hence, applying ScreenSeq in model 
system selection supports the assessment of in vivo resem-
blance and extrapolation of crucial toxicity-related pathways. 
While this study shows largely homogeneous cardiotoxicant 
responses in cells derived from two donors, future efforts will 
include the screening of genetically diverse donor panels to 
cover the population heterogeneity of cardiotoxicant 
responses.

Another important aspect of this study was the detection 
of the key characteristics of cardiotoxicity through the combi-
nation of HCI, CaT and ScreenSeq [146]. These assays cover a 
specific spectrum of phenotypes relevant for cardiotoxicity 
prediction (Figure 6(a)), which explains the optimal cardiotoxi-
city prediction performance when combining all methods 
(Figure 6(c)). The CaT analysis detects changes in contraction 
behavior and Ca2+ wave dynamics commonly altered by func-
tional cardiotoxicants. The HCI assay monitors changes in cell 
loss, global alterations in Ca2+ levels, mitochondrial state and 
DNA structure and, when paired with the measurement of 
gross ATP levels, it provides direct evidence for structural 
alterations. ScreenSeq quantifies gene-wise transcript levels 
and transcriptional responses, from which cell identity (differ-
entiation state), pathway activities and signatures of com-
pound targets and toxicity mechanisms can be derived, 
providing the highest level of mechanistic insights into mole-
cular events. A combined application of HCI, CaT and 
ScreenSeq revealed that hiPSC-CMs were suitable to investi-
gate all cell-autonomous, cardiac key characteristics (KCs) of 
the 12 previously proposed KCs of cardiovascular toxicity [146] 
(Figures 1(a), 4 and 5(a)). For instance, impaired regulation of 
cardiac excitability (KC 1), contractility and relaxation (KC 2) 
were detected by CaT readouts, which integrate contraction 
cycles and Ca2+ fluctuations (Figure 1(a), Supplementary 
Figure S1A-E). ScreenSeq detected altered regulation of the 
striated muscle cell contraction pathway and regulation of 
energy metabolism as frequently associated transcriptional 
responses (Figure 5(a)), which are likely of an adaptive nature. 
Induction of cardiomyocyte injury and death (KC 3) was mea-
sured as cell count and ATP content (Figure 1(a)). ScreenSeq 
distinguishes different types of injury through regulation of 
distinct response pathways (proteotoxic stress, nuclear geno-
toxic stress, NRF2-mediated oxidative stress response, ferrop-
tosis) (Figures 4 and Figure 5(a)). Acute toxicity at high 
compound concentrations was further associated with autop-
hagy and AMPK signaling (Figure 4, cluster 10b). Refinement 
of stress signatures with mechanistic compound sets will 
extend the resolution of this method in the future. Impaired 
mitochondrial functionality (KC 8) was monitored by HCI and 
ScreenSeq (Figures 1(a), Figure 5(a)). Induction of oxidative 
stress (KC 10) was observed as activation of the NRF2 pathway 
(Figure 5(a)). Compound-specific alterations in multiple path-
ways of paracrine factor and hormone signaling (KC 12) were 
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further detected by ScreenSeq (PPAR-α, PPAR-γ, TGF-β, TNF-α, 
EGF/EGFR and VEGF/VEGFR) (Figure 4). Dyslipidemia (KC 7) is 
mainly associated with vascular toxicity; however, ScreenSeq 
analysis identified cholesterol regulation as a common lipid 
metabolism response to structural and functional cardiotoxi-
cants in hiPSC-CMs (Figure 5(a)). The implication of this reg-
ulation on lipid homeostasis remains to be further 
investigated. General conclusions on the predictive power of 
individual key characteristics and pathways of cardiotoxicity 
require the expansion of the chemical space of the compound 
set. Notably, cell death-related pathways and autophagy were 
not common among the response mechanisms 
(Supplementary Figure S5), but future expansion of the com-
pound panel will address their potential use as cardiotoxicity 
predictors.

In summary, HCI, CaT analysis and ScreenSeq together 
facilitate optimal cardiotoxicity prediction in hiPSC-CMs by 
integrating complementary levels of compound response 
information to maximize the coverage of cardiotoxicity 
mechanisms. Herein, a range of reference compounds with 
well-characterized structural (S) and functional (F) alterations 
were tested. Negative cardiotoxicants that were consistently 
classified as true negatives across all assays and thresholds 
(10x Cmax and 25x Cmax) included acyclovir, amoxicillin, acet-
ylsalicylic acid, buspirone, enalapril, furosemide and tolbuta-
mide. The two exceptions were acetaminophen (false positive 
with ScreenSeq at 10x Cmax) and sildenafil (false positive with 
CaT and HCI at 25x Cmax). Acetaminophen was detected as a 
false positive in transcriptomics due to the upregulation of 
mitochondrial pathways (Figure 5). Acetaminophen is known 
to be metabolized by the hepatic cytochrome CYP2E1 into a 
highly reactive toxic metabolite, N-acetyl-para-benzo-quinone 
imine (NAPQI), which binds to a number of mitochondrial 
proteins inducing mitochondrial oxidative stress [147]. The 
responses here observed cannot be attributed to NAPQI 
since the cardiac tissue does not typically express CYP2E1, 
therefore this points out to other mechanisms leading to 
mitochondrial dysfunction potentially caused by the parent 
drug. Sildenafil is a phosphodiesterase 5 inhibitor that relaxes 
vascular smooth muscle and does not affect the force of 
cardiac contraction or increase the risk of ventricular arrhyth-
mia in vivo [148]. However, here sildenafil showed significant 
in vitro effects by reducing the peak amplitude and increasing 
the beating frequency, in addition to decreasing the cellular 
ATP while increasing the free cytosolic Ca2+. These data are 
consistent with another Ca2+ transient study published by 
Pointon et al., where sildenafil was also categorized as a false 
positive in hiPSC-CMs due to causing significant changes in a 
number of peak parameters at similar concentrations [17]. 
Positive cardiotoxicants that were consistently classified as 
true positives across all assays and thresholds included amio-
darone (S/F), amitriptyline (F), amphotericin B (S), bepridil (F), 
bortezomib (S), cisapride (F), digoxin (F), diltiazem (F), doxor-
ubicin (S/F), imatinib (S), lapatinib (S/F), mitoxantrone (S), 
nifedipine (F), sunitinib (S/F) and verapamil (S/F). Positive car-
diotoxicants that were not detected in any of our assay sys-
tems included atenolol (F), AZT (S), and levosimendan (F).

Within the CaT assay, frequency, peak width and peak 
decay time were primarily affected by functional or mixed 

structural/functional cardiotoxicants (Figure 1). The frequency 
readout correctly identified expected positive (epinephrine, 
dopamine, dobutamine and isoproterenol) and negative (ami-
triptyline, sotalol, lidocaine, lapatinib, sunitinib and proprano-
lol) chronotropic effects. Other compounds with reported 
negative chronotropic effects did not show a significant effect 
in the frequency parameter within the concentration range 
tested at any of the time points (atenolol, bepridil, nifedipine 
and amiodarone). Diltiazem and verapamil showed a signifi-
cant increase in frequency at both time points at low concen-
trations only, while at higher concentrations they caused 
complete amplitude depletion (Figure 1). Finally, increased 
peak width and/or decay time was detected for various cardi-
otoxicants with inhibitory activity on the hERG channel (ami-
triptyline, cisapride, sotalol, propranolol, lidocaine, 
dobutamine, dasatinib, lapatinib, sunitinib) (Figure 1(a)). 
These compounds have been reported to cause QT prolonga-
tion in the literature (Tables 2, 3 and 4), except for lidocaine, 
which has been reported to induce QT shortening [149]. Ca2+ 

antagonists such as bepridil, diltiazem, nifedipine, verapamil 
and amiodarone (Table 1) showed an expected decrease in 
Ca2+ wave amplitude, as can be seen in Figure 1 [150,151]. A 
range of other cardiotoxicants with different primary targets 
also decreased amplitude in the absence of loss of cell viability 
(Na+ channel blocker lidocaine, β-adrenergic receptor blockers 
dobutamine, propranolol and sotalol), while, in some cases, a 
decrease in amplitude was paired with the loss of cell viability 
after 24 h (digoxin, bortezomib), implying that indirect sup-
pression of Ca2+ dynamics is a common secondary effect of 
cardiotoxicants. Previous publications have provided evidence 
for beating suppression by these drugs using hiPSC-CMs 
[17,18].

Some structural cardiotoxicants such as 5-fluorouracil, AZT, 
cyclophosphamide, clozapine, dasatinib, rosiglitazone and iso-
proterenol were not detected by HCI alone. 5-fluorouracil 
interrupts DNA replication by inhibiting thymidylate synthase, 
and it is consistently categorized as a cardiotoxicant in vivo in 
the literature. However, the in vitro results have not always 
been successful at predicting such toxicities [16,18,140,143]. 
For instance, Guo et al. showed the challenges for obtaining 
correct predictions for 5-fluorouracil using impedance mea-
surements in hiPSC-CMs [16,152]. Archer et al. were able to 
determine an IC50 value for three parameters related to struc-
tural changes in cardiac microtissues (cellular viability 
(IC50 = 27.5 µM), ER integrity (IC50 = 60 µM) and MMP 
(IC50 = 11.2 µM)), however, their 10 µM cutoff for optimal 
prediction metrics categorized 5-fluorouracil as a false nega-
tive [140]. Sirenko et al. characterized the beating profiles of 
hiPSC-CMs using intracellular Ca2+ flux readouts and were able 
to identify significant changes in the beating count, peak 
spacing and cell viability caused by 5-fluorouracil at concen-
trations < 30 µM, which allowed identifying 5-fluorouracil as a 
true positive [18]. In this study, both the CaT and the HCI assay 
failed to detect any significant changes at 10x Cmax and 25x 
Cmax thresholds, while ScreenSeq facilitated the identification 
of 5-fluorouracil as true cardiotoxicant at 10x Cmax due to the 
genotoxicity and cell cycle entry pathways being significantly 
regulated, which agrees with 5-fluorouracil’s main mechanism 
of action (Figure 5).
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In this study, no significant effects were observed for AZT at 
any end-point. It has been proposed that the cardiotoxicity 
shown by AZT may be mediated by disrupting the substrate 
supply of 5′-triphosphate for mt-DNA replication. Therefore, 
for mitochondrial biogenesis to be affected, long-term treat-
ment with AZT may be required before mitochondria are 
depleted enough to significantly reduce ATP synthesis [153]. 
Clements et al., however, investigated the effects of AZT on 
the hESC-CMs electrophysiology (multielectrode array assay), 
beating (impedance assay) and subcellular structure (high 
content imaging) and could not identify any effects at the 
concentrations tested at 72 h incubation treatment [12].

Another interesting compound is cyclophosphamide, 
whose in vivo cardiotoxicity classification in the literature is 
not always unanimous. Archer et al. categorized cyclopho-
sphamide as a false negative due to the IC50 values of the 
structural parameters being ≥ 10 µM in cardiac microtissues, 
while Sirenko et al. found it to be a true positive through 
changes in some beating parameters but as a false negative 
using the cell viability assay at 24 h in hiPSC-CMs (cutoff of 
IC50 < 30 µM) [18,140]. Conversely, Guo et al. reported cyclo-
phosphamide as a true negative through impedance measure-
ments in hiPSC-CMs due to negative or equivocal observations 
in the clinic for hERG inhibition, clinical QT prolongation and 
TdP/arrhythmia [16]. Here, cyclophosphamide was considered 
a positive structural cardiotoxicant due to the reported cardiac 
events in the literature [154]. Cyclophosphamide acts as a DNA 
cross-linking agent, mainly acting through its metabolite, 
phosphoramide mustard. Additionally, cyclophosphamide 
undergoes hepatic metabolism that results in the production 
of acrolein, a toxic metabolite believed to act on the myocar-
dium and endothelial cells causing depletion of antioxidants/ 
ATP levels, altered contractility and damaged endothelium 
and enhanced pro-inflammatory/pro-apoptotic activities 
resulting in cardiomyopathy [155]. The lack of hepatic meta-
bolism in our in vitro system could protect against both meta-
bolites and could explain the absence of detrimental structural 
effects observed in the HCI assay, as well as the low transcrip-
tional response elicited by cyclophosphamide (Figure 6(a)). In 
future studies, this could be addressed by co-culturing cardi-
omyocytes and hepatocytes in a multi-organ human-on-a-chip 
system [156].

ScreenSeq improved the overall sensitivity by identifying 
various molecular mechanisms of structural toxicity, such as 
alterations in cardiac pathways, genotoxicity, ER stress and 
mitochondrial toxicity (Figure 4, Figure 5(a)). Genotoxicity 
pathway enrichment was associated with genotoxic com-
pounds (mitoxantrone, mitomycin C, fluorouracil and idaru-
bicin) and hence more specific than HCI chromatin readouts 
(Figure 1(a)). Several ER stress inducers (sunitinib, lapatinib, 
amphotericin B) elicited protein misfolding responses (UPR, 
proteasome degradation, Parkin-Ubiquitin system). 
Cardiotoxicants with known mitochondrial toxicity compo-
nent targeted mitochondrial ETC/OXPHOS and respiratory 
complex assembly pathways (mitoxantrone, amiodarone, 
dasatinib, imatinib, doxorubicin, idarubicin and sunitinib). 
While transcriptional responses are a promising readout for 
mitochondrial damage, it should be noted that other non- 

cardiotoxicants with other organ toxicities could present 
mitochondrial liabilities, therefore signature refinement 
would be beneficial to specifically identify cardiotoxicity- 
associated mitochondrial damage. A clear example of this is 
acetaminophen, a well-known drug for liver injury but not 
cardiotoxicity which showed mitochondrial pathway regula-
tion (Figure 5(a)) [147].

In summary, this study demonstrates the potential of HCI, 
CaT analysis and ScreenSeq in predicting compound-induced 
cardiotoxicity in hiPSC-CMs, and thereby serves as a proof of 
concept for an integrated approach aiming at maximum cov-
erage of cardiotoxicity mechanisms. Expansion of the com-
pound collection will further enhance the diversity of toxicity 
mechanisms, optimize the definition of relevant concentration 
ranges for cardiotoxicity classification, and facilitate the defini-
tion of refined transcriptomic signatures to predict compound 
targets and diverse toxicity mechanisms. The use of additional 
endpoints could further support pathway activities monitored 
with ScreenSeq and distinguish between primary and adaptive 
effects. The current in vitro model system is designed to cover 
cell-autonomous aspects of cardiotoxicity. Cardiac microtis-
sues containing the three major cardiac cell types, cardiomyo-
cytes, fibroblasts and endothelial cells, recapitulate better the 
cardiac organ and could therefore add predictive value to our 
assays [140,157]. Non-cardiomyocytes play an important role 
in cardiac physiology and their interactions are important not 
only in normal heart functionality but also in the development 
of disease phenotypes and cardiotoxicity [158,159]. For 
instance, it has been suggested that sunitinib’s cardiotoxicity 
is mediated through fibrotic processes [160]. In summary, 
compound set expansion and model system optimization 
will extend the application of combined HCI, CaT analysis 
and ScreenSeq in the integrated prediction of compound 
cardiotoxicity and mechanism of action.

5. Conclusion

This study introduces a mechanism-driven risk assessment 
approach combining structural (high-content imaging; HCI), 
functional (Ca2+ transience; CaT) and high-throughput RNA- 
sequencing (ScreenSeq) for the pre-clinical risk assessment of 
novel compounds in hiPSC-CMs. Together, HCI, CaT and 
ScreenSeq covered a broad spectrum of phenotypes and 
mechanisms relevant for cardiotoxicity prediction, providing 
excellent cardiotoxicity prediction metrics (10x Cmax: 100% 
specificity, 82% sensitivity, 86% accuracy; 25x Cmax: 89% spe-
cificity, 91% sensitivity, 90% accuracy).

Funding

This paper was funded by Evotec International GmbH.

Declaration of interests
A Rosell-Hidalgo, C Bruhn, P Walker, E Shardlow, R Barton, S Ryder, T 
Samatov, A Hackmann, G Aquino, M Fernandes dos Reis, V Galatenko, R 
Fritsch and C Dohrmann are employed at Cyprotex Discovery Ltd., where 
these assays are performed for our partners as a service. The authors have 
no other relevant affiliations or financial involvement with any 

18 A. ROSELL-HIDALGO ET AL.



organization or entity with a financial interest in or financial conflict with 
the subject matter or materials discussed in the manuscript. This includes 
employment, consultancies, honoraria, stock ownership or options, expert 
testimony, grants or patents received or pending, or royalties.

Reviewer Disclosures

Peer reviewers on this manuscript have no relevant financial or other 
relationships to disclose.

Author Contributions
A Rosell-Hidalgo: Paper writing, experimental work and data analysis; C 
Bruhn: Paper writing and data analysis; P Walker: Paper writing, experi-
mental planning and data analysis; E Shardlow: Experimental work; R 
Barton: Experimental work; S Ryder: Experimental work and data analysis; 
T Samatov: Experimental work; A Hackmann: Experimental work; G 
Aquino: Experimental work; M Fernandes dos Reis: Data analysis; V 
Galatenko: Data analysis; R Fritsch: Data analysis and experimental plan-
ning; C Dohrmann: Experimental planning.

Data availability statement
ScreenSeq data were deposited into the Gene Expression Omnibus data-
base under accession number GSE244740 (GEO Accession viewer (nih. 
gov)).

Acknowledgments

We thank V Kari and A Filipchyk for discussions and help in data 
processing.

ORCID
Paul A Walker http://orcid.org/0000-0002-7840-9709

References

1. Siramshetty VB, Nickel J, Omieczynski C, et al. WITHDRAWN—a 
resource for withdrawn and discontinued drugs. Nucleic Acids 
Res. 2016;44(Database issue):D1080–D1086. doi: 10.1093/nar/ 
gkv1192

2. Onakpoya IJ, Heneghan CJ, Aronson JK. Post-marketing withdrawal 
of 462 medicinal products because of adverse drug reactions: a 
systematic review of the world literature. BMC Med. 2016;14(1):10.

3. The Non-Clinical Evaluation of the Potential for Delayed Ventricular 
Repolarization (QT Interval Prolongation) by Human Pharmaceuticals. 
2005 [cited 2022]. Available from: http://www.ich.org/products/ 
guidelines/safety/safety-single/article/safety-pharmacology-stu 
dies-for-humanpharmaceuticals.html.

4. Park E, Willard J, Bi D, et al. The impact of drug-related QT prolon-
gation on FDA regulatory decisions. Int J Cardiol. 2013;168(5):4975– 
4976. doi: 10.1016/j.ijcard.2013.07.136.

5. Zhang S, Zhou Z, Gong Q, et al. Mechanism of block and identifica-
tion of the verapamil binding domain to HERG potassium channels. 
Circ Res. 1999;84(9):989–998. doi: 10.1161/01.RES.84.9.989

6. Wu L, Rajamani S, Li H, et al. Reduction of repolarization reserve 
unmasks the proarrhythmic role of endogenous late Na+ current in 
the heart. Am J Physiol Heart Circ Physiol. 2009;297(3):H1048– 
H1057. doi: 10.1152/ajpheart.00467.2009

7. Gintant G, Sager PT, Stockbridge N. Evolution of strategies to 
improve preclinical cardiac safety testing. Nat Rev Drug Discov. 
2016;15(7):457–471.

8. Colatsky T, Fermini B, Gintant G, et al. The Comprehensive in Vitro 
Proarrhythmia Assay (CiPA) initiative — update on progress. J 
Pharmacol Toxicol Methods. 2016;81:15–20.

9. Laverty H, Benson C, Cartwright EJ, et al. How can we improve our 
understanding of cardiovascular safety liabilities to develop safer 
medicines? Br J Pharmacol. 2011;163(4):675–693. doi: 10.1111/j. 
1476-5381.2011.01255.x

10. Matsui T, Miyamoto K, Yamanaka K, et al. Cell-based two-dimen-
sional morphological assessment system to predict cancer drug- 
induced cardiotoxicity using human induced pluripotent stem cell- 
derived cardiomyocytes. Toxicol Appl Pharmacol. 2019;383:114761.

11. Doherty KR, Talbert DR, Trusk PB, et al. Structural and functional 
screening in human induced-pluripotent stem cell-derived cardio-
myocytes accurately identifies cardiotoxicity of multiple drug types. 
Toxicol Appl Pharmacol. 2015;285(1):51–60. doi: 10.1016/j.taap. 
2015.03.008

12. Clements M, Millar V, Williams AS, et al. Bridging functional and 
structural cardiotoxicity assays using human embryonic stem cell- 
derived cardiomyocytes for a more comprehensive risk assessment. 
Toxicol Sci. 2015;148(1):241–260. doi: 10.1093/toxsci/kfv180

13. Pointon A, Abi-Gerges N, Cross MJ, et al. Phenotypic profiling of 
structural cardiotoxins in vitro reveals dependency on multiple 
mechanisms of toxicity. Toxicol Sci. 2013;132(2):317–326. doi: 10. 
1093/toxsci/kft005

14. Cohen JD, Babiarz JE, Abrams RM, et al. Use of human stem cell 
derived cardiomyocytes to examine sunitinib mediated cardiotoxi-
city and electrophysiological alterations. Toxicol Appl Pharmacol. 
2011;257(1):74–83. doi: 10.1016/j.taap.2011.08.020

15. Dyballa S, Miñana R, Rubio-Brotons M, et al. Comparison of zebrafish 
larvae and hiPSC cardiomyocytes for predicting drug induced cardio-
toxicity in humans. Toxicol Sci. 2019;171(2):283–295. doi: 10.1093/ 
toxsci/kfz165

16. Guo L, Coyle L, Abrams RMC, et al. Refining the human iPSC- 
cardiomyocyte arrhythmic risk assessment model. Toxicol Sci. 
2013;136(2):581–594. doi: 10.1093/toxsci/kft205

17. Pointon A, Harmer AR, Dale IL, et al. Assessment of cardiomyocyte 
contraction in human-induced pluripotent stem cell-derived cardi-
omyocytes. Toxicol Sci. 2015;144(2):227–237. doi: 10.1093/toxsci/ 
kfu312

18. Sirenko O, Cromwell EF, Crittenden C, et al. Assessment of beating 
parameters in human induced pluripotent stem cells enables quan-
titative in vitro screening for cardiotoxicity. Toxicol Appl 
Pharmacol. 2013;273(3):500–507. doi: 10.1016/j.taap.2013.09.017

19. Honda M, Kiyokawa J, Tabo M, et al. Electrophysiological character-
ization of cardiomyocytes derived from human induced pluripotent 
stem cells. J Pharmacol Sci. 2011;117(3):149–159. doi: 10.1254/jphs. 
11038FP

20. Ma J, Guo L, Fiene SJ, et al. High purity human-induced pluripotent 
stem cell-derived cardiomyocytes: electrophysiological properties 
of action potentials and ionic currents. Am J Physiol Heart Circ 
Physiol. 2011;301(5):H2006–17. doi: 10.1152/ajpheart.00694.2011

21. Kadota S, Minami I, Morone N, et al. Development of a reentrant 
arrhythmia model in human pluripotent stem cell-derived cardiac 
cell sheets. Eur Heart J. 2013;34(15):1147–1156. doi: 10.1093/eur 
heartj/ehs418

22. Kane C, Couch L, Terracciano CM. Excitation-contraction coupling 
of human induced pluripotent stem cell-derived cardiomyocytes. 
Front Cell Dev Biol. 2015;3:59.

23. Puppala D, Collis LP, Sun SZ, et al. Comparative gene expression 
profiling in human-induced pluripotent stem cell—derived cardio-
cytes and human and cynomolgus heart tissue. Toxicol Sci. 
2013;131(1):292–301. doi: 10.1093/toxsci/kfs282

24. Scholkmann F, Boss J, Wolf M. An efficient algorithm for automatic 
peak detection in noisy periodic and quasi-periodic signals. 
Algorithms. 2012;5(4):588–603.

25. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal 
RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/ 
bioinformatics/bts635

26. Love MI, Huber W, Anders S. Moderated estimation of fold change 
and dispersion for RNA-seq data with DESeq2. Genome Biol. 
2014;15(12):550.

27. Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human 
proteome. Science. 2017;356(6340). doi: 10.1126/science.aal3321

EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY 19

https://doi.org/10.1093/nar/gkv1192
https://doi.org/10.1093/nar/gkv1192
http://www.ich.org/products/guidelines/safety/safety-single/article/safety-pharmacology-studies-for-humanpharmaceuticals.html
http://www.ich.org/products/guidelines/safety/safety-single/article/safety-pharmacology-studies-for-humanpharmaceuticals.html
http://www.ich.org/products/guidelines/safety/safety-single/article/safety-pharmacology-studies-for-humanpharmaceuticals.html
https://doi.org/10.1016/j.ijcard.2013.07.136
https://doi.org/10.1161/01.RES.84.9.989
https://doi.org/10.1152/ajpheart.00467.2009
https://doi.org/10.1111/j.1476-5381.2011.01255.x
https://doi.org/10.1111/j.1476-5381.2011.01255.x
https://doi.org/10.1016/j.taap.2015.03.008
https://doi.org/10.1016/j.taap.2015.03.008
https://doi.org/10.1093/toxsci/kfv180
https://doi.org/10.1093/toxsci/kft005
https://doi.org/10.1093/toxsci/kft005
https://doi.org/10.1016/j.taap.2011.08.020
https://doi.org/10.1093/toxsci/kfz165
https://doi.org/10.1093/toxsci/kfz165
https://doi.org/10.1093/toxsci/kft205
https://doi.org/10.1093/toxsci/kfu312
https://doi.org/10.1093/toxsci/kfu312
https://doi.org/10.1016/j.taap.2013.09.017
https://doi.org/10.1254/jphs.11038FP
https://doi.org/10.1254/jphs.11038FP
https://doi.org/10.1152/ajpheart.00694.2011
https://doi.org/10.1093/eurheartj/ehs418
https://doi.org/10.1093/eurheartj/ehs418
https://doi.org/10.1093/toxsci/kfs282
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1126/science.aal3321


28. Walker PA, Ryder S, Lavado A, et al. The evolution of strategies to 
minimise the risk of human drug-induced liver injury (Dili) in drug 
discovery and development. Arch Toxicol. 2020;94(8):2559–2585. 
doi: 10.1007/s00204-020-02763-w

29. Lum BK, Follmer CH, Lockwood RH, et al. Experimental studies on 
the effects of physostigmine and of isoproterenol on toxicity produced 
by tricyclic antidepressant agents. J Toxicol Clin Toxicol. 1982;19 
(1):51–65. doi: 10.3109/15563658208990366

30. Warrington SJ, Turner P, Skrumsager BK. Cardiovascular (ECG and 
systolic time intervals) and anticholinergic effects of repeated 
doses of femoxetine–a comparison with amitriptyline and placebo 
in healthy men. Br J Clin Pharmacol. 1989;27(3):343–351.

31. Kassim T, Mahfood Haddad T, Rakhra A, et al. A case of amitripty-
line-induced myocarditis. Cureus. 2018;10(6):e2840. doi: 10.7759/ 
cureus.2840

32. Ansari A, Maron BJ, Berntson DG. Drug-induced toxic myocarditis. 
Tex Heart Inst J. 2003;30(1):76–79.

33. Heard K, Cain BS, Dart RC, et al. Tricyclic antidepressants directly 
depress human myocardial mechanical function independent of 
effects on the conduction system. Acad Emerg Med. 2001;8 
(12):1122–1127. doi: 10.1111/j.1553-2712.2001.tb01127.x

34. Shah RR. The significance of QT interval in drug development. Br J 
Clin Pharmacol. 2002;54(2):188–202.

35. Carré A. [Pharmacologic importance of the combination atenolol/ 
nifedipine in hypertensive patients]. Drugs. 1998;56(Suppl 2):23–30.

36. Albouaini K, Andron M, Alahmar A, et al. Beta-blockers use in 
patients with chronic obstructive pulmonary disease and concomi-
tant cardiovascular conditions. Int J Chron Obstruct Pulmon Dis. 
2007;2(4):535–540.

37. Taira N. Differences in cardiovascular profile among calcium 
antagonists. Am J Cardiol. 1987;59(3):24b–29b.

38. Manouvrier J, Sagot M, Caron C, et al. Nine cases of torsade de 
pointes with bepridil administration. Am Heart J. 1986;111(5):1005– 
1007. doi: 10.1016/0002-8703(86)90660-5

39. Singh BN. Safety profile of bepridil determined from clinical trials in 
chronic stable angina in the United States. Am J Cardiol. 1992;69 
(11):68–74.

40. Chai W, Chan KY, de Vries R, et al. Inotropic effects of prokinetic 
agents with 5-HT(4) receptor agonist actions on human isolated 
myocardial trabeculae. Life Sci. 2012;90(13–14):538–544. doi: 10. 
1016/j.lfs.2012.01.009

41. Vitola J, Vukanovic J, Roden DM. Cisapride-induced torsades de 
pointes. J Cardiovasc Electrophysiol. 1998;9(10):1109–1113.

42. Paakkari I. Cardiotoxicity of new antihistamines and cisapride. Toxicol 
Lett. 2002;127(1):279–284.

43. Orvos P, Kohajda Z, Szlovák J, et al. evaluation of possible proar-
rhythmic potency: comparison of the effect of dofetilide, cisapride, 
sotalol, terfenadine, and verapamil on hERG and native i kr currents 
and on cardiac action potential. Toxicol Sci. 2019;168(2):365–380. 
doi: 10.1093/toxsci/kfy299

44. Belz GG, Breithaupt-Grögler K, Osowski U. Treatment of congestive 
heart failure–current status of use of digitoxin. Eur J Clin Invest. 
2001;31(Suppl 2):10–17.

45. Wallick D, Stuesse SL, Masuda Y, et al. Effects of digoxin on the 
control of heart rate and atrioventricular conduction in the dog. 
Cardiovasc Res. 1983;17(7):400–406. doi: 10.1093/cvr/17.7.400

46. Hansen PB, Buch J, Rasmussen OO, et al. Influence of atenolol and 
nifedipine on digoxin-induced inotropism in humans. Br J Clin 
Pharmacol. 1984;18(6):817–822. doi: 10.1111/j.1365-2125.1984. 
tb02550.x

47. Smith TW, Haber E. Digoxin intoxication: the relationship of clinical 
presentation to serum digoxin concentration. J Clin Invest. 1970;49 
(12):2377–2386.

48. Lip GY, Metcalfe MJ, Dunn FG. Diagnosis and treatment of digoxin 
toxicity. Postgrad Med J. 1993;69(811):337–339.

49. Carvalho-Silva D, Pierleoni A, Pignatelli M, et al. Open targets plat-
form: new developments and updates two years on. Nucleic Acids 
Res. 2019;47(D1):D1056–d1065. doi: 10.1093/nar/gky1133

50. Schwinger RH, Böhm M, Erdmann E. Negative inotropic properties 
of isradipine, nifedipine, diltiazem, and verapamil in diseased 

human myocardial tissue. J Cardiovasc Pharmacol. 1990;15 
(6):892–899.

51. Morini L, Moretti M, Brandolini F, et al. Two fatal cases involving 
cardiovascular drugs diltiazem and amlodipine. J Anal Toxicol. 
2018;42(1):e15–e19. doi: 10.1093/jat/bkx087

52. Imanaga I, Kaneda T, Miyakawa N. [Comparison of the effects of 
dobutamine with dopamine and isoproterenol on inotropism and 
chronotropism in the mammalian heart (author’s transl)]. Nihon 
Yakurigaku Zasshi. 1979;75(2):147–157.

53. Ahonen J, Aranko K, Iivanainen A, et al. Pharmacokinetic-pharma-
codynamic relationship of dobutamine and heart rate, stroke 
volume and cardiac output in healthy volunteers. Clin Drug 
Investig. 2008;28(2):121–127. doi: 10.2165/00044011-200828020- 
00006

54. O’Connor CM, Gattis WA, Uretsky BF, et al. Continuous intravenous 
dobutamine is associated with an increased risk of death in 
patients with advanced heart failure: insights from the Flolan 
International Randomized Survival Trial (FIRST). Am Heart J. 
1999;138(1 Pt 1):78–86. doi: 10.1016/S0002-8703(99)70250-4

55. Chiba S. Comparative study of chronotropic and inotropic effects of 
dopamine and seven derivatives on the isolated, blood-perfused 
dog atrium. Clin Exp Pharmacol Physiol. 1978;5(1):23–29.

56. Takahashi M, Yamada T, Kinoshita M. [Catecholamines and beta- 
blockers for the treatment of heart failure]. Nihon Rinsho. 1993;51 
(5):1268–1275.

57. FDA. Hospira, Inc., Lake Forest, IL 60045 USA, Dopamine hydrochlor-
ide and 5% Dextrose injection, USP. [cited 2022 Oct]. Available from: 
https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/ 
018132s067,018826s045lbl.pdf.

58. Furnival CM, Linden RJ, Snow HM. The inotropic and chronotropic 
effects of catecholamines on the dog heart. J Physiol. 1971;214 
(1):15–28.

59. Leenen FH, Chan YK, Smith DL, et al. Epinephrine and left ventricular 
function in humans: effects of beta-1 vs nonselective beta-blockade. 
Clin Pharmacol Ther. 1988;43(5):519–528. doi: 10.1038/clpt.1988.67

60. Maslow AD, Regan MM, Schwartz C, et al. Inotropes improve right 
heart function in patients undergoing aortic valve replacement for 
aortic stenosis. Anesth Analg. 2004;98(4):891–902. doi: 10.1213/01. 
ANE.0000107940.23783.33

61. Joshi RK, Aggarwal N, Aggarwal M, et al. Successful use of levosi-
mendan as a primary inotrope in pediatric cardiac surgery: an 
observational study in 110 patients. Ann Pediatr Cardiol. 2016;9 
(1):9–15. doi: 10.4103/0974-2069.171389

62. Lilleberg J, Nieminen MS, Sundberg S, et al. Haemodynamic dose- 
efficacy of levosimendan in healthy volunteers. Eur J Clin 
Pharmacol. 1994;47(3):267–274. doi: 10.1007/BF02570507

63. Graf BM. The cardiotoxicity of local anesthetics: the place of ropi-
vacaine. Curr Top Med Chem. 2001;1(3):207–214.

64. Horáček M, Vymazal T. Lidocaine not so innocent: cardiotoxicity 
after topical anaesthesia for bronchoscopy. Indian J Anaesth. 
2012;56(1):95–96.

65. Chang YY, Ho CM, Tsai SK. Cardiac arrest after intraurethral admin-
istration of lidocaine. J Formos Med Assoc. 2005;104(8):605–606.

66. Fami MJ, Ho NT, Mason CM. Another report of adverse reactions to 
immediate-release nifedipine. Pharmacotherapy. 1998;18(5):1133– 
1135.

67. Fedor JM, Stack RS, Pryor DB, et al. Adverse effects of nifedipine 
therapy on hypertrophic obstructive cardiomyopathy. Chest. 
1983;83(4):704–706. doi: 10.1378/chest.83.4.704

68. Mladěnka P, Applová L, Patočka J, et al. Comprehensive review of 
cardiovascular toxicity of drugs and related agents. Med Res Rev. 
2018;38(4):1332–1403. doi: 10.1002/med.21476

69. Crumb WJ Jr, Vicente J, Johannesen L, et al. An evaluation of 30 
clinical drugs against the comprehensive in vitro proarrhythmia 
assay (CiPA) proposed ion channel panel. J Pharmacol Toxicol 
Methods. 2016;81:251–262.

70. Scruggs ER, Dirks Naylor AJ. Mechanisms of zidovudine-induced mito-
chondrial toxicity and myopathy. Pharmacology. 2008;82(2):83–88.

71. de la Asunción JG, L. Del Olmo M, Gómez-Cambronero LG, et al. 
AZT induces oxidative damage to cardiac mitochondria: protective 

20 A. ROSELL-HIDALGO ET AL.

https://doi.org/10.1007/s00204-020-02763-w
https://doi.org/10.3109/15563658208990366
https://doi.org/10.7759/cureus.2840
https://doi.org/10.7759/cureus.2840
https://doi.org/10.1111/j.1553-2712.2001.tb01127.x
https://doi.org/10.1016/0002-8703(86)90660-5
https://doi.org/10.1016/j.lfs.2012.01.009
https://doi.org/10.1016/j.lfs.2012.01.009
https://doi.org/10.1093/toxsci/kfy299
https://doi.org/10.1093/cvr/17.7.400
https://doi.org/10.1111/j.1365-2125.1984.tb02550.x
https://doi.org/10.1111/j.1365-2125.1984.tb02550.x
https://doi.org/10.1093/nar/gky1133
https://doi.org/10.1093/jat/bkx087
https://doi.org/10.2165/00044011-200828020-00006
https://doi.org/10.2165/00044011-200828020-00006
https://doi.org/10.1016/S0002-8703(99)70250-4
https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/018132s067,018826s045lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/018132s067,018826s045lbl.pdf
https://doi.org/10.1038/clpt.1988.67
https://doi.org/10.1213/01.ANE.0000107940.23783.33
https://doi.org/10.1213/01.ANE.0000107940.23783.33
https://doi.org/10.4103/0974-2069.171389
https://doi.org/10.1007/BF02570507
https://doi.org/10.1378/chest.83.4.704
https://doi.org/10.1002/med.21476


effect of vitamins C and E. Life Sci. 2004;76(1):47–56. doi: 10.1016/j. 
lfs.2004.06.020

72. Chinello P, Lisena FP, Angeletti C, et al. Role of antiretroviral treat-
ment in prolonging QTc interval in HIV-positive patients. J Infect. 
2007;54(6):597–602. doi: 10.1016/j.jinf.2006.11.001

73. FDA. Aurobindo Pharma USA, Inc. Zidovudine Tablets, USP. [cited 
2022 October]. Available from: https://www.accessdata.fda.gov/ 
drugsatfda_docs/label/2009/022294lbl.pdf.

74. Danaher PJ, Cao MK, Anstead GM, et al. Reversible dilated cardio-
myopathy related to amphotericin B therapy. J Antimicrob 
Chemother. 2004;53(1):115–117. doi: 10.1093/jac/dkg472

75. Chung DK, Koenig MG. Reversible cardiac enlargement during 
treatment with amphotericin B and hydrocortisone. Report of 
three cases. Am Rev Respir Dis. 1971;103(6):831–841.

76. Arsura EL, Ismail Y, Freedman S, et al. Amphotericin B-induced 
dilated cardiomyopathy. Am J Med. 1994;97(6):560–562. doi: 10. 
1016/0002-9343(94)90353-0

77. Porta-Sánchez A, Gilbert C, Spears D, et al. Incidence, diagnosis, 
and management of qt prolongation induced by cancer therapies: 
a systematic review. J Am Heart Assoc. 2017;6(12). doi: 10.1161/ 
JAHA.117.007724

78. Hasinoff BB, Patel D, Wu X. Molecular mechanisms of the cardio-
toxicity of the proteasomal-targeted drugs bortezomib and carfil-
zomib. Cardiovasc Toxicol. 2017;17(3):237–250.

79. Maharjan S, Oku M, Tsuda M, et al. Mitochondrial impairment 
triggers cytosolic oxidative stress and cell death following pro-
teasome inhibition. Sci Rep. 2014;4(1):5896. doi: 10.1038/ 
srep05896

80. Nowis D, Mączewski M, Mackiewicz U, et al. Cardiotoxicity of the 
anticancer therapeutic agent bortezomib. Am J Pathol. 2010;176 
(6):2658–2668. doi: 10.2353/ajpath.2010.090690

81. Subedi A, Sharma LR, Shah BK. Bortezomib-induced acute conges-
tive heart failure: a case report and review of literature. Ann 
Hematol. 2014;93(10):1797–1799.

82. Abdel-Wahab BA, Metwally ME. Clozapine-induced cardiotoxicity in 
rats: involvement of tumour necrosis factor alpha, NF-κβ and cas-
pase-3. Toxicol Rep. 2014;1:1213–1223.

83. Stöllberger C, Huber JO, Finsterer J. Antipsychotic drugs and QT 
prolongation. Int Clin Psychopharmacol. 2005;20(5):243–251.

84. Figueredo VM. Chemical cardiomyopathies: the negative effects of 
medications and nonprescribed drugs on the heart. Am J Med. 
2011;124(6):480–488.

85. Patel RK, Moore AM, Piper S, et al. Clozapine and cardiotoxicity - A 
guide for psychiatrists written by cardiologists. Psychiatry Res. 
2019;282:112491.

86. Moghe A, Ghare S, Lamoreau B, et al. Molecular mechanisms of 
acrolein toxicity: relevance to human disease. Toxicol Sci. 2015;143 
(2):242–255. doi: 10.1093/toxsci/kfu233

87. Yin J, Xie J, Guo X, et al. Plasma metabolic profiling analysis of 
cyclophosphamide-induced cardiotoxicity using metabolomics 
coupled with UPLC/Q-TOF-MS and ROC curve. J Chromatogr B 
Analyt Technol Biomed Life Sci. 2016;1033-1034:428–435.

88. Duan J, Tao J, Zhai M, et al. Anticancer drugs-related QTc prolon-
gation, torsade de pointes and sudden death: current evidence and 
future research perspectives. Oncotarget. 2018;9(39):25738–25749. 
doi: 10.18632/oncotarget.25008

89. Hasinoff BB, Patel D. Mechanisms of the cardiac myocyte-damaging 
effects of dasatinib. Cardiovasc Toxicol. 2020;20(4):380–389.

90. Pun SC, Neilan TG. Cardiovascular side effects of small molecule 
therapies for cancer. Eur Heart J. 2016;37(36):2742–2745.

91. Caldemeyer L, Dugan M, Edwards J, et al. Long-term side effects of 
tyrosine kinase inhibitors in chronic myeloid leukemia. Curr 
Hematol Malig Rep. 2016;11(2):71–79. doi: 10.1007/s11899-016- 
0309-2

92. Moslehi JJ, Longo DL. Cardiovascular toxic effects of targeted 
cancer therapies. N Engl J Med. 2016;375(15):1457–1467.

93. Guignabert C, Phan C, Seferian A, et al. Dasatinib induces lung 
vascular toxicity and predisposes to pulmonary hypertension. J 
Clin Invest. 2016;126(9):3207–3218. doi: 10.1172/JCI86249

94. Abu Rmilah AA, Lin G, Begna KH, et al. Risk of QTc prolongation 
among cancer patients treated with tyrosine kinase inhibitors. Int J 
Cancer. 2020;147(11):3160–3167. doi: 10.1002/ijc.33119

95. Moudgil R, Yeh ET. Mechanisms of cardiotoxicity of cancer che-
motherapeutic agents: cardiomyopathy and beyond. Can J Cardiol. 
2016;32(7):863–870.e5.

96. Kanduri J, More LA, Godishala A, et al. Fluoropyrimidine-Associated 
Cardiotoxicity. Cardiol Clin. 2019;37(4):399–405. doi: 10.1016/j.ccl. 
2019.07.004

97. Polk A, Vaage-Nilsen M, Vistisen K, et al. Cardiotoxicity in cancer 
patients treated with 5-fluorouracil or capecitabine: a systematic 
review of incidence, manifestations and predisposing factors. 
Cancer Treat Rev. 2013;39(8):974–984. doi: 10.1016/j.ctrv.2013.03. 
005

98. Zafar A, Drobni ZD, Mosarla R, et al. The incidence, risk factors, and 
outcomes with 5-fluorouracil-associated coronary vasospasm. JACC 
CardioOncol. 2021;3(1):101–109. doi: 10.1016/j.jaccao.2020.12.005.

99. Allison JD, Tanavin T, Yang Y, et al. Various manifestations of 5- 
fluorouracil cardiotoxicity: a multicenter case series and review of 
literature. Cardiovasc Toxicol. 2020;20(4):437–442. doi: 10.1007/ 
s12012-020-09562-w

100. Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced 
by tyrosine kinase inhibitors. Acta Oncol. 2009;48(7):964–970.

101. Kerkelä R, Grazette L, Yacobi R, et al. Cardiotoxicity of the cancer 
therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–916. 
doi: 10.1038/nm1446

102. Villani F, Comazzi R, Lacaita G, et al. Possible enhancement of the 
cardiotoxicity of doxorubicin when combined with mitomycin C. 
Medi Oncy and Tumr Pharm. Med Oncol Tumor Pharmacother. 
1985;2(2):93–97.

103. Page RL 2nd, O’Bryant CL, Cheng D, et al. Drugs that may cause or 
exacerbate heart failure: a scientific statement from the American 
heart association. Circulation. 2016;134(6):e32–69. doi: 10.1161/CIR. 
0000000000000426

104. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: 
incidence, treatment and prevention. Drug Saf. 2000;22(4):263–302.

105. Damiani RM, Moura DJ, Viau CM, et al. Pathways of cardiac toxicity: 
comparison between chemotherapeutic drugs doxorubicin and 
mitoxantrone. Arch Toxicol. 2016;90(9):2063–2076. doi: 10.1007/ 
s00204-016-1759-y

106. Kingwell E, Koch M, Leung B, et al. Cardiotoxicity and other adverse 
events associated with mitoxantrone treatment for MS. Neurology. 
2010;74(22):1822–1826. doi: 10.1212/WNL.0b013e3181e0f7e6

107. Shaikh AY, Suryadevara S, Tripathi A, et al. Mitoxantrone-induced 
cardiotoxicity in acute myeloid leukemia-a velocity vector imaging 
analysis. Echocardiography. 2016;33(8):1166–1177. doi: 10.1111/ 
echo.13245

108. Arora M, Choudhary S, Singh PK, et al. Structural investigation on 
the selective COX-2 inhibitors mediated cardiotoxicity: a review. 
Life Sci. 2020;251:117631.

109. Mason RP, Walter MF, McNulty HP, et al. Rofecoxib increases sus-
ceptibility of human LDL and membrane lipids to oxidative 
damage: a mechanism of cardiotoxicity. J Cardiovasc Pharmacol. 
2006;47(Suppl 1):S7–14. doi: 10.1097/00005344-200605001-00003

110. Topol EJ. Failing the public health–rofecoxib, Merck, and the FDA. 
N Engl J Med. 2004;351(17):1707–1709.

111. He H, Tao H, Xiong H, et al. Rosiglitazone causes cardiotoxicity via 
peroxisome proliferator-activated receptor γ-independent mito-
chondrial oxidative stress in mouse hearts. Toxicol Sci. 2014;138 
(2):468–481. doi: 10.1093/toxsci/kfu015

112. Mishra P, Singh SV, Verma AK, et al. Rosiglitazone induces cardio-
toxicity by accelerated apoptosis. Cardiovasc Toxicol. 2014;14 
(2):99–119. doi: 10.1007/s12012-013-9234-y

113. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular 
events with rosiglitazone: a meta-analysis. Jama. 2007;298 
(10):1189–1195.

114. Loke YK, Kwok CS, Singh S. Comparative cardiovascular effects of 
thiazolidinediones: systematic review and meta-analysis of obser-
vational studies. BMJ. 2011;342(mar17 1):d1309–d1309.

EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY 21

https://doi.org/10.1016/j.lfs.2004.06.020
https://doi.org/10.1016/j.lfs.2004.06.020
https://doi.org/10.1016/j.jinf.2006.11.001
https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022294lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022294lbl.pdf
https://doi.org/10.1093/jac/dkg472
https://doi.org/10.1016/0002-9343(94)90353-0
https://doi.org/10.1016/0002-9343(94)90353-0
https://doi.org/10.1161/JAHA.117.007724
https://doi.org/10.1161/JAHA.117.007724
https://doi.org/10.1038/srep05896
https://doi.org/10.1038/srep05896
https://doi.org/10.2353/ajpath.2010.090690
https://doi.org/10.1093/toxsci/kfu233
https://doi.org/10.18632/oncotarget.25008
https://doi.org/10.1007/s11899-016-0309-2
https://doi.org/10.1007/s11899-016-0309-2
https://doi.org/10.1172/JCI86249
https://doi.org/10.1002/ijc.33119
https://doi.org/10.1016/j.ccl.2019.07.004
https://doi.org/10.1016/j.ccl.2019.07.004
https://doi.org/10.1016/j.ctrv.2013.03.005
https://doi.org/10.1016/j.ctrv.2013.03.005
https://doi.org/10.1016/j.jaccao.2020.12.005
https://doi.org/10.1007/s12012-020-09562-w
https://doi.org/10.1007/s12012-020-09562-w
https://doi.org/10.1038/nm1446
https://doi.org/10.1161/CIR.0000000000000426
https://doi.org/10.1161/CIR.0000000000000426
https://doi.org/10.1007/s00204-016-1759-y
https://doi.org/10.1007/s00204-016-1759-y
https://doi.org/10.1212/WNL.0b013e3181e0f7e6
https://doi.org/10.1111/echo.13245
https://doi.org/10.1111/echo.13245
https://doi.org/10.1097/00005344-200605001-00003
https://doi.org/10.1093/toxsci/kfu015
https://doi.org/10.1007/s12012-013-9234-y


115. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial 
infarction and death from cardiovascular causes. N Engl J Med. 
2007;356(24):2457–2471.

116. Songbo M, Lang H, Xinyong C, et al. Oxidative stress injury in 
doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41–48.

117. Chen B, Peng X, Pentassuglia L, et al. Molecular and cellular 
mechanisms of anthracycline cardiotoxicity. Cardiovasc Toxicol. 
2007;7(2):114–121. doi: 10.1007/s12012-007-0005-5

118. Temma K, Chugun A, Hara Y, et al. Biphasic positive inotropic 
actions of doxorubicin in isolated Guinea pig hearts Relation to 
Ca2+ release from the sarcoplasmic reticulum. Gen Pharmacol. 
1999;33(3):229–236. doi: 10.1016/S0306-3623(99)00012-9

119. Zhan H, Aizawa K, Sun J, et al. Ataxia telangiectasia mutated in 
cardiac fibroblasts regulates doxorubicin-induced cardiotoxicity. 
Cardiovasc Res. 2016;110(1):85–95. doi: 10.1093/cvr/cvw032

120. Raj S, Franco VI, Lipshultz SE. Anthracycline-induced cardiotoxicity: 
a review of pathophysiology, diagnosis, and treatment. Curr Treat 
Options Cardiovasc Med. 2014;16(6):315.

121. Christidi E, Brunham LR. Regulated cell death pathways in doxor-
ubicin-induced cardiotoxicity. Cell Death Dis. 2021;12(4):339.

122. Zhang Y, Li Q, Xu D, et al. Idarubicin-induced oxidative stress and 
apoptosis in cardiomyocytes: an in vitro molecular approach. Hum 
Exp Toxicol. 2021;40(12_suppl):S553–s562. doi: 10.1177/ 
09603271211033774

123. Sermsappasuk P, Hrynyk R, Gubernator J, et al. Reduced uptake of 
liposomal idarubicin in the perfused rat heart. Anticancer Drugs. 
2008;19(7):729–732. doi: 10.1097/CAD.0b013e328304d948

124. Zhang J, Knapton A, Lipshultz SE, et al. Isoproterenol-induced 
cardiotoxicity in Sprague-Dawley rats: correlation of reversible 
and irreversible myocardial injury with release of cardiac troponin 
T and roles of iNOS in myocardial injury. Toxicol Pathol. 2008;36 
(2):277–278. doi: 10.1177/0192623307313010

125. Xie Q, Li S, Gao Y, et al. Ergosterol attenuates isoproterenol- 
induced myocardial cardiotoxicity. Cardiovasc Toxicol. 2020;20 
(5):500–506. doi: 10.1007/s12012-020-09574-6

126. Shaikh S, Bhatt LK, Barve K. Attenuation of isoproterenol-induced 
cardiotoxicity in rats by Narirutin rich fraction from grape fruit. 
Phytomedicine. 2019;55:222–228.

127. Abi-Gerges N, Indersmitten T, Truong K, et al. Multiparametric mechan-
istic profiling of inotropic drugs in adult human primary cardiomyo-
cytes. Sci Rep. 2020;10(1):7692. doi: 10.1038/s41598-020-64657-2

128. Zima A, Martynyuk AE, Seubert CN, et al. Antagonism of the 
positive dromotropic effect of isoproterenol by adenosine: role of 
nitric oxide, cGMP-dependent cAMP-phosphodiesterase and pro-
tein kinase G. J Mol Cell Cardiol. 2000;32(9):1609–1619. doi: 10. 
1006/jmcc.2000.1196

129. FDA. Hospira, Inc., Lake Forest, IL 60045 US. Isuprel™, Isoproterenol 
Hydrochloride Injection, USP, Reference ID: 3280592. [cited 2022 Oct]. 
Available from: https://www.accessdata.fda.gov/drugsatfda_docs/ 
label/2013/010515s031lbl.pdf.

130. Moy B, Goss PE. Lapatinib-associated toxicity and practical man-
agement recommendations. Oncologist. 2007;12(7):756–765.

131. Jacob F, Yonis AY, Cuello F, et al. Analysis of tyrosine kinase 
inhibitor-mediated decline in contractile force in rat engineered 
heart tissue. PLoS One. 2016;11(2):e0145937. doi: 10.1371/journal. 
pone.0145937

132. Perez EA, Koehler M, Byrne J, et al. Cardiac safety of lapatinib: 
pooled analysis of 3689 patients enrolled in clinical trials. Mayo 
Clin Proc. 2008;83(6):679–686. doi: 10.1016/S0025-6196(11) 
60896-3

133. Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxi-
city and arrhythmia. Nat Rev Cardiol. 2020;17(8):474–502.

134. Rainer PP, Doleschal B, Kirk JA, et al. Sunitinib causes dose-depen-
dent negative functional effects on myocardium and cardiomyo-
cytes. BJU Int. 2012;110(10):1455–1462. doi: 10.1111/j.1464-410X. 
2012.11134.x

135. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with 
tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011– 
2019. doi: 10.1016/S0140-6736(07)61865-0

136. Schmidinger M, Zielinski CC, Vogl UM, et al. Cardiac toxicity of suni-
tinib and sorafenib in patients with metastatic renal cell carcinoma. J 
Clin Oncol. 2008;26(32):5204–5212. doi: 10.1200/JCO.2007.15.6331

137. Karlsson M, Zhang C, Méar L, et al. A single-cell type transcrip-
tomics map of human tissues. Sci Adv. 2021;7(31). doi: 10.1126/ 
sciadv.abh2169

138. Varga ZV, Ferdinandy P, Liaudet L, et al. Drug-induced mitochon-
drial dysfunction and cardiotoxicity. Am J Physiol Heart Circ 
Physiol. 2015;309(9):H1453–67. doi: 10.1152/ajpheart.00554.2015

139. Gorini S, De Angelis A, Berrino L, et al. Chemotherapeutic drugs 
and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, 
and sunitinib. Oxid Med Cell Longev. 2018;2018:7582730.

140. Archer CR, Sargeant R, Basak J, et al. Characterization and valida-
tion of a human 3D cardiac microtissue for the assessment of 
changes in cardiac pathology. Sci Rep. 2018;8(1):10160. doi: 10. 
1038/s41598-018-28393-y

141. Bouitbir J, Alshaikhali A, Panajatovic MV, et al. Mitochondrial oxi-
dative stress plays a critical role in the cardiotoxicity of sunitinib: 
running title: sunitinib and oxidative stress in hearts. Toxicology. 
2019;426:152281

142. Ando H, Yoshinaga T, Yamamoto W, et al. A new paradigm for 
drug-induced torsadogenic risk assessment using human iPS cell- 
derived cardiomyocytes. J Pharmacol Toxicol Methods. 
2017;84:111–127.

143. Palmer JA, Smith AM, Gryshkova V, et al. A targeted metabolomics- 
based assay using human induced pluripotent stem cell-derived 
cardiomyocytes identifies structural and functional cardiotoxicity 
potential. Toxicol Sci. 2020;174(2):218–240. doi: 10.1093/toxsci/ 
kfaa015

144. Pointon A, Pilling J, Dorval T, et al. From the Cover: High- 
Throughput Imaging of Cardiac Microtissues for the Assessment 
of Cardiac Contraction during Drug Discovery. Toxicol Sci. 2016;155 
(2):444–457. doi: 10.1093/toxsci/kfw227

145. Bouitbir J, Panajatovic MV, Frechard T, et al. Imatinib and dasatinib 
provoke mitochondrial dysfunction leading to oxidative stress in 
C2C12 myotubes and human RD cells. Front Pharmacol. 
2020;11:1106.

146. Lind L, Araujo JA, Barchowsky A, et al. Key characteristics of cardi-
ovascular toxicants. Environ Health Perspect. 2021;129(9):95001. 
doi: 10.1289/EHP9321

147. Yoon E, Babar A, Choudhary M, et al. Acetaminophen-induced 
hepatotoxicity: a comprehensive update. J Clin Transl Hepatol. 
2016;4(2):131–142. doi: 10.14218/JCTH.2015.00052

148. Jackson G, Montorsi P, Cheitlin MD. Cardiovascular safety of silde-
nafil citrate (Viagra®): an updated perspective. Urology. 2006;68(3, 
Supplement):47–60.

149. Raschi E, Poluzzi E, Koci A, et al. QT interval shortening in sponta-
neous reports submitted to the FDA: the need for consensus. Br J 
Clin Pharmacol. 2011;72(5):839–841. doi: 10.1111/j.1365-2125.2011. 
04065.x

150. Lubic SP, Nguyen KPV, Dave B, et al. Antiarrhythmic agent amio-
darone possesses calcium channel blocker properties. J Cardiovasc 
Pharmacol. 1994;24(5):707–714. doi: 10.1097/00005344-199424050- 
00004

151. Soward AL, Vanhaleweyk GL, Serruys PW. The haemodynamic 
effects of nifedipine, verapamil and diltiazem in patients with 
coronary artery disease. A review. Drugs. 1986;32(1):66–101.

152. Shah NR, Shah A, Rather A. Ventricular fibrillation as a likely con-
sequence of capecitabine-induced coronary vasospasm. J Oncol 
Pharm Pract. 2011;18(1):132–135.

153. McKee EE, Bentley AT, Hatch M, et al. Phosphorylation of thymidine 
and AZT in heart mitochondria: elucidation of a novel mechanism 
of AZT cardiotoxicity. Cardiovasc Toxicol. 2004;4(2):155–167. doi:  
10.1385/CT:4:2:155

154. Oztop I, Genzer M, Okan T, et al. Evaluation of cardiotoxicity of a 
combined bolus plus infusional 5-fluorouracil/folinic acid treatment 
by echocardiography, plasma troponin I level, QT interval and 
dispersion in patients with gastrointestinal system cancers. Jpn J 
Clin Oncol. 2004;34(5):262–268. doi: 10.1093/jjco/hyh047

22 A. ROSELL-HIDALGO ET AL.

https://doi.org/10.1007/s12012-007-0005-5
https://doi.org/10.1016/S0306-3623(99)00012-9
https://doi.org/10.1093/cvr/cvw032
https://doi.org/10.1177/09603271211033774
https://doi.org/10.1177/09603271211033774
https://doi.org/10.1097/CAD.0b013e328304d948
https://doi.org/10.1177/0192623307313010
https://doi.org/10.1007/s12012-020-09574-6
https://doi.org/10.1038/s41598-020-64657-2
https://doi.org/10.1006/jmcc.2000.1196
https://doi.org/10.1006/jmcc.2000.1196
https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/010515s031lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/010515s031lbl.pdf
https://doi.org/10.1371/journal.pone.0145937
https://doi.org/10.1371/journal.pone.0145937
https://doi.org/10.1016/S0025-6196(11)60896-3
https://doi.org/10.1016/S0025-6196(11)60896-3
https://doi.org/10.1111/j.1464-410X.2012.11134.x
https://doi.org/10.1111/j.1464-410X.2012.11134.x
https://doi.org/10.1016/S0140-6736(07)61865-0
https://doi.org/10.1200/JCO.2007.15.6331
https://doi.org/10.1126/sciadv.abh2169
https://doi.org/10.1126/sciadv.abh2169
https://doi.org/10.1152/ajpheart.00554.2015
https://doi.org/10.1038/s41598-018-28393-y
https://doi.org/10.1038/s41598-018-28393-y
https://doi.org/10.1093/toxsci/kfaa015
https://doi.org/10.1093/toxsci/kfaa015
https://doi.org/10.1093/toxsci/kfw227
https://doi.org/10.1289/EHP9321
https://doi.org/10.14218/JCTH.2015.00052
https://doi.org/10.1111/j.1365-2125.2011.04065.x
https://doi.org/10.1111/j.1365-2125.2011.04065.x
https://doi.org/10.1097/00005344-199424050-00004
https://doi.org/10.1097/00005344-199424050-00004
https://doi.org/10.1385/CT:4:2:155
https://doi.org/10.1385/CT:4:2:155
https://doi.org/10.1093/jjco/hyh047


155. Iqubal A, Iqubal MK, Sharma S, et al. Molecular mechanism 
involved in cyclophosphamide-induced cardiotoxicity: old drug 
with a new vision. Life Sci. 2019;218:112–131.

156. Oleaga C, Riu A, Rothemund S, et al. Investigation of the effect of 
hepatic metabolism on off-target cardiotoxicity in a multi-organ 
human-on-a-chip system. Biomaterials. 2018;182:176–190.

157. Pointon A, Pilling J, Dorval T, et al. From the Cover: High- 
Throughput Imaging of Cardiac Microtissues for the Assessment 
of Cardiac Contraction during Drug Discovery. Toxicol Sci. 2017;155 
(2):444–457.

158. Pellman J, Zhang J, Sheikh F. Myocyte-fibroblast communication in 
cardiac fibrosis and arrhythmias: mechanisms and model systems. J 
Mol Cell Cardiol. 2016;94:22–31.

159. Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in 
cardiac growth, contractile performance, and rhythmicity. Physiol 
Rev. 2003;83(1):59–115.

160. Blanca AJ, Ruiz-Armenta MV, Zambrano S, et al. Inflammatory 
and fibrotic processes are involved in the cardiotoxic effect of 
sunitinib: protective role of l-carnitine. Toxicol Lett. 
2016;241:9–18.

EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY 23


	Abstract
	1.  Introduction
	2.  Materials and methods
	2.1.  Materials
	2.2.  Cell culture and compound treatment
	2.3.  High-content imaging (HCI) and Ca2+ transient (CaT) measurements
	2.4.  Whole genome high-throughput transcriptomics (ScreenSeq)
	2.5.  Sample clustering
	2.6.  Pathway enrichment
	2.7.  Minimum effective concentration analysis of pathway responses

	2.8.  hiPSC-CMs quality control with human protein atlas expression data
	2.9.  ScreenSeq cluster signature analysis
	2.10.  Software

	3.  Results
	3.1.  Cardiotoxicity assessment with Ca2+ transient and high-content imaging assays
	3.2.  Establishment of high-throughput transcriptomics for cardiotoxicity risk assessment
	3.3.  High-throughput transcriptomics cardiotoxicity screening with ScreenSeq
	3.4.  Cardiotoxicity prediction with ScreenSeq analysis

	4.  Discussion
	5.  Conclusion
	Funding
	Declaration of interests
	Reviewer Disclosures
	Author Contributions
	Data availability statement
	Acknowledgments
	References

