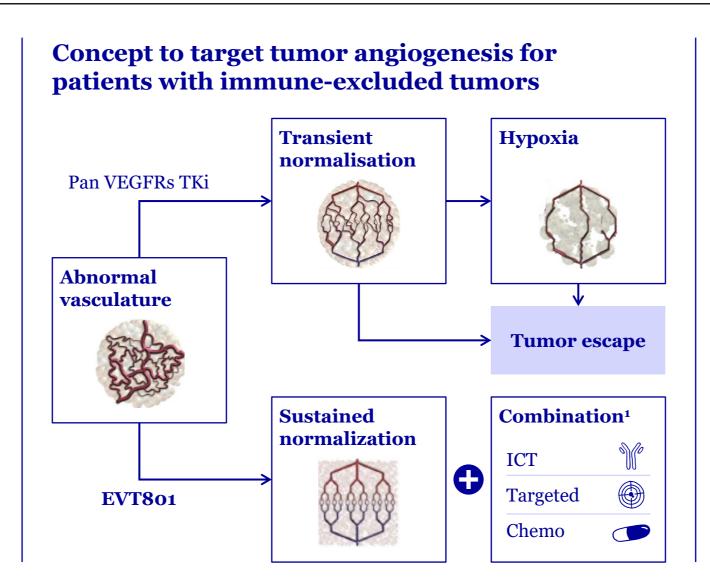


Translation to clinical success by using state-of-the-art bio-markers assays & multi-omics – the story of EVT801

EVT801 - a selective VEGFR-3 inhibitor

Targeting tumor angiogenesis in comparison to angiokinase inhibitors


VEGFR-3 is expressed on tumor blood vessels

Human primary kidney cancer VEGFR3 labelling

IHC image of VEGFR-3 expression in bone metastasis after treatment with sunitinib

EVT801 is a selective VEGFR-3 inhibitor

Recombinant enzymes

Recombinant enzymes	EVT801 (IC ₅₀)
VEGFR-1	396 nM
VEGFR-2	125 nM
VEGFR-3	11 nM

VEGFR3^{pos} Endothelial cells

hLMVEC pErk1/2	EVT801 (IC ₅₀)
VEGF-C (VEGFR-2/-R3 ligand)	13 nM
	EVT801

hLMVEC proliferation	(IC ₅₀)
VEGF-C (VEGFR-2/-R3 ligand)	11 nM
VEGF-D (VEGFR-3/-R3 ligand)	16 nM

VEGFR3 expression on tumors and TME defines 3 distinct groups¹

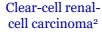
Selection of indications to maximize the probability of EVT801 response

Orphan diseases

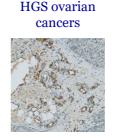
High Tumor VEGFR3^{pos}

Cancers that express VEGFR-3 on the tumour

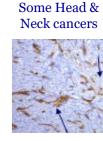
VEGFR-3 expression

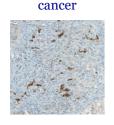


2


High TME VEGFR3^{pos}

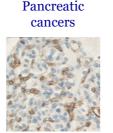
Cancers that highly express VEGFR-3 in the stromal environment




3

Intermediate TME VEGFR3^{pos}

Cancers that highly express VEGFR-3 in the stromal environment


VEGFR-3 expression

PAGE 3

Lung

TECENTRIQ® (Atezolizumab) is FDA-approved in NSCLC, SCLC, HCC, melanoma, UC, TNBC, ASPS

Tumor immune phenotype³

Indication		Immune inflamed	Immune excluded	Immune desert
Incidence	CRC	12%	70%	25%
	NSCLC	31%	44%	25%
	mUC	26%	47%	17%
	TNBC	36%	47%	17%

¹ based on VEGFR3 expression and localization; Melanoma, triple negative breast, gastric, urothelial cancers were not investigated; head & neck cancers requires more investigations 2 Same VEGFR3 expression was observed on metastatic biopsies from patients with ccRCC treated with anti-angiogenic drugs

EVT801 inhibits tumor growth in models with high VEGFR-3pos in TME

Hepatocarcinoma and pancreatic tumor mouse models

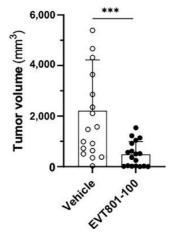
DEN-induced liver tumor mouse model

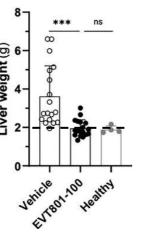
Model characterization at month 12

VEGFR3 is highly expressed in sinusoids inside tumor: like HBV-induced HCC

DEN-induced liver tumor mouse model data after 2 months of daily treatment with vehicle or 100 mg/kg EVT801

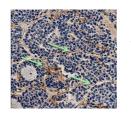
Representative whole liver


Vehicle



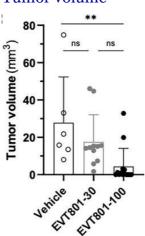
EVT801

Tumor volume



Liver weight

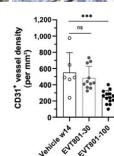
Transgenic Rip1-Tag2 pancreatic tumor mouse model


Model characterization

VEGFR3 is highly expressed on endothelial cells inside tumor

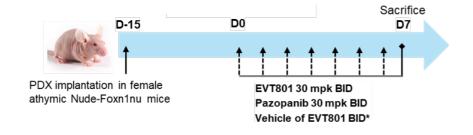
Orthotopic Rip1-Tag2 tumor volume after 2 weeks of daily treatment with vehicle, 30 mg/kg EVT801 or 100 mg/kg EVT801

Tumor volume

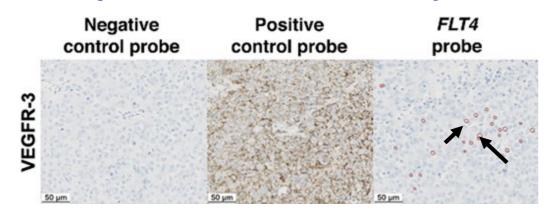


Representative IHC images

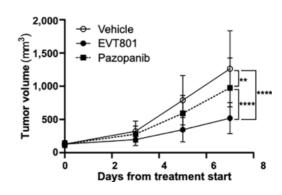
Intratumor vascular density



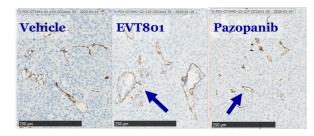
EVT801 is effective in PDX model with intermediate VEGFR-3pos in TME


Inhibits tumor growth, normalizes vasculature and reduces hypoxia

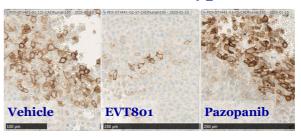
Rhabdomyosarcoma RH-HAM-001 PDX model


Representative ISH image of hFLT4 mRNA expression in RH-HAM-001 PDX tumors at Day o

Hs-PPIB is used as positive control to validate FLT4 mRNA staining



20% of cells in RT-HAM-001 tumors expressed detectable amounts of FLT4 (VEGFR3) mRNA

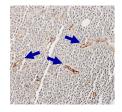

EVT801 more effective than pazopanib in sarcoma PDX model

CD31: a marker for blood vessels

CAIX: a marker of hypoxia

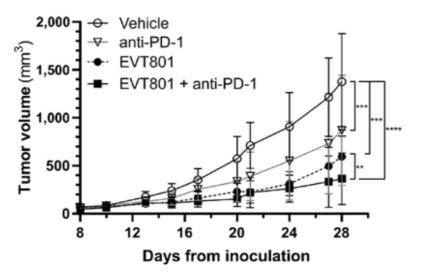
EVT801

- Induces tumor normalization
- Reduces hypoxia & necrosis

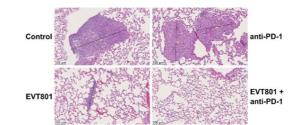


EVT801 enhances ICT efficacy in models with intermediate VEGFR-3pos

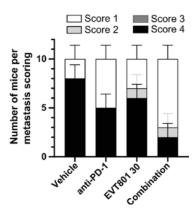
Inhibits tumor growth, reduces lung metastasis, and increases CD8^{pos} T-cells infiltration

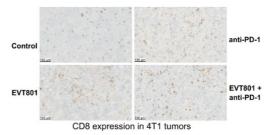

Orthotopic 4T1 tumor in BALB/c mice

Model characterization at Day 7

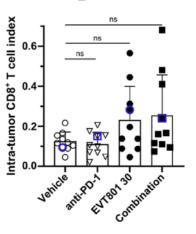


VEGFR3 is weakly expressed in endothelial cells inside tumor


Tumor volume progression in presence of vehicle, anti-PD-1, EVT801 (30 mg/kg/BID) or a combination


Quantification of lung metastasis at endpoint

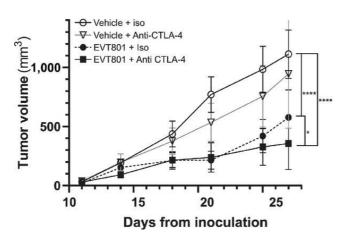
Representative HE staining of 4T1 lung metastasis

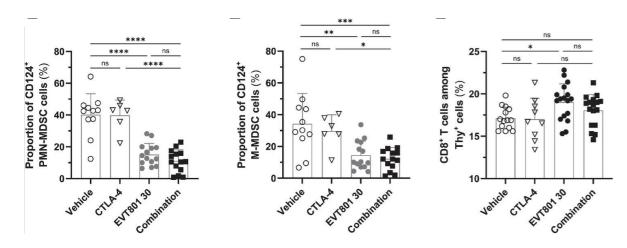


Frequency of CD8^{pos} T cells in 4T1 tumors at endpoint

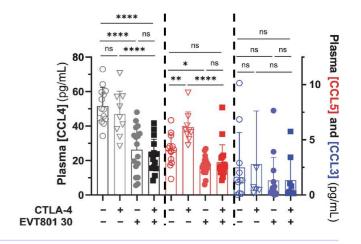
Representative IHC images of CD8^{pos} T-cells via CD8 expression in 4T1 tumors at endpoint

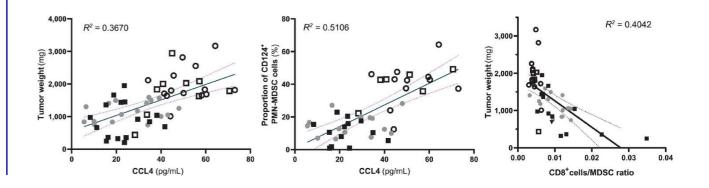
The highlighted datapoint in blue refers to the samples that were used for IHC imaging




EVT801 reduces circulation of chemokines & MDSCs in the blood

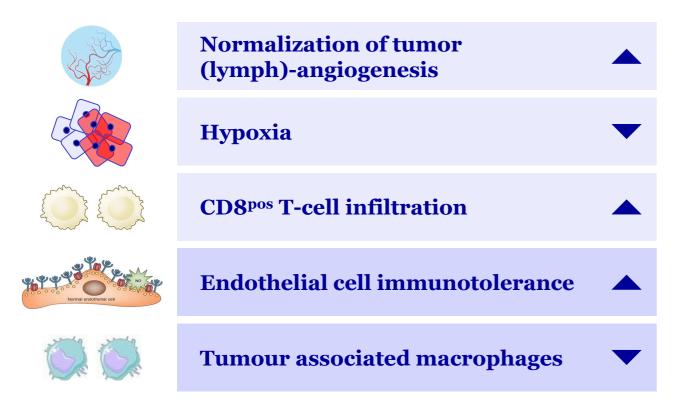
EVT801 increases anti-CTLA-4 mAb efficacy on orthotopic 4T1 tumor model (weak VEGFR-3^{pos} in TME)


Tumor volume progression in presence of vehicle, anti-CTLA-4, EVT801 (30 mg/kg/ BID) or a combination


Blood concentration of CD124^{pos} PMN-MDSCs, CD124^{pos}, M-MDSCs & CD8^{pos} T-cells at endpoint

Plasma concentrations of CCL3/MIP-1α, CCL4/MIP-1β & CCL5/Rantes at endpoint

Correlation between circulating CCL4/tumor weight & PMN-MDSC/tumor weight; Inverse correlation between CD8^{pos} T-cell/PMN-MDSC ratio & tumor weight


IHC: immunohistochemistry

EVT801 induces tumor blood vessels normalization

Schematic overview based on pre-clinical data

EVT801 activity on tumor microenvironment

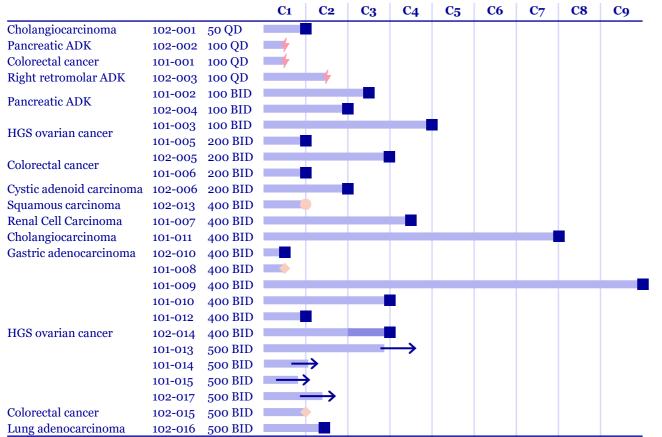
Tumor metastasis

Multiple cooperative modes of action

Myeloid-derived suppressor cells

EVT801 MoA hypothesis: by destructing VEGFR3^{pos} tumor blood vessels, EVT801 would induce tumor blood vessels normalization, reduce hypoxia, and improve CD8 T-cells infiltration

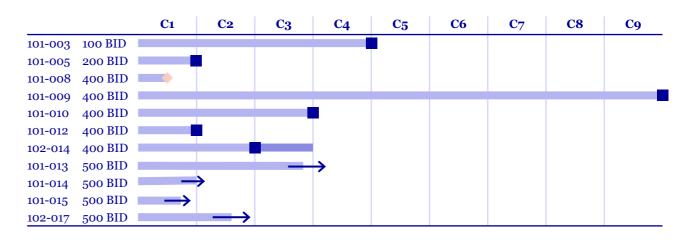
Data from Tacconi & al. with SAR131675



Patient overview

26 patients with various types of diseases were treated with EVT801 at different doses

Currently 32 patients included in stage 1


- 6 Screening failure
- 26 patients treated within 6 cohorts at different doses (50mg QD to 500 mg BID)

Human active dose prediction based on predicted human clearance of 2.5 mL/min/kg: **375 mg BID***. A conservative estimate of human clearance (4 mL/min/kg) would drive to a dose of **600 mg BID***

Focus on patients with Ovarian Cancer

Status on 29th of February 2024



Stop for IMP incompliance

IMP taken after Progressive disease

→ Ongoing Treatment

Progressive disease (PD)

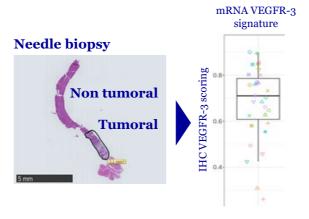
Dose Limiting Toxicity

→ Stop for adverse event

EVT801 – Exploratory Biomarkers in FIH trials

From TE/PD markers to safety to stratification

Patient stratification based on VEGFR-3 expression in archival tissues and/or biopsies


- VEGFR-3 signature by IHC:
 - VEGFR-3/CA9/CD8/CD31/PD-L1

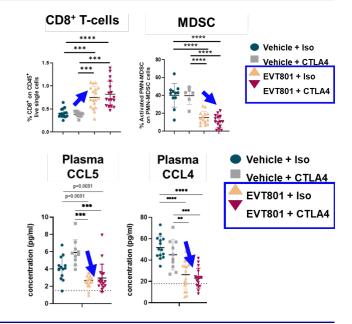
So µm

Example VEGFR-3/Immune infiltration (CD8) in renal cell carcinoma

VEGFR-3 & response to immune checkpoint therapies mRNA signature

- VEGFR-3 mRNA signature
- PD-1 response mRNA signature on archival tissues and/or biopsies

Circulating drug related biomarkers


Bulk RNA sequencing on blood cells at C1D1 vs C2D1 (Paxgene tube)

Safety biomarkers to control hypertension

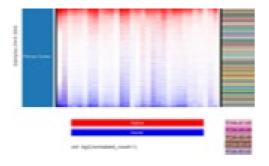
Blood pressure measurement to control that EVT801 does not induce hypertension (as demonstrated in preclinical model)

Circulating endpoint biomarkers

- Immunomonitoring based on CD8+ T-cells/ MDSC ratio at C1D1 vs C2D1
- **Proteins signature** based on chemokines involved in inflammation & angiogenesis at C1D1 vs C2D1

Resting samples will include

- Frozen whole blood & plasma
- Frozen PBMCs
- FFPE biopsies

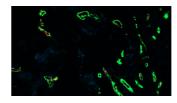


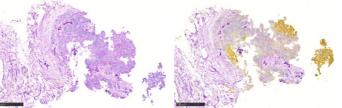
Patient characterization from FFPE archival tissues

Established link between clusters of genes and tumor micro-environment

Data mining

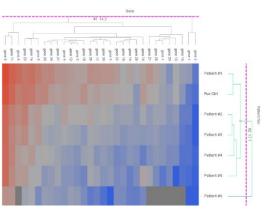
- Describe predictive signature to treatment
- Target co-regulated genes
- Validation of the signature using Fluidigm
- Transfer to Nanostring technology during clinical trials

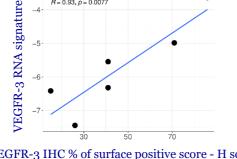



Identification of gene signature from the literature of from publicly available dataset

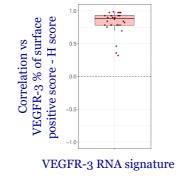
FFPE Archival tissues to provide mRNA and protein expression data

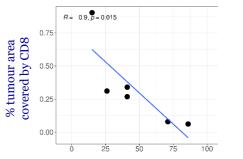
Histology labeling

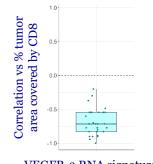

- tumor architecture to identifier the regions to collect RNA
- Labelling of tumor micro-environment:
 - Immune infiltration
 - Vascularization



RNA signature from limited quantities of material including needle biopsies


• RNA signature developed by Evotec bio-informatic department


Correlation of RNA signature and VEGFR-3 expression (p=0.0077)


VEGFR-3 IHC % of surface positive score - H score

Establishment of an anti-correlation between VEGFR-3 expression and immune infiltration

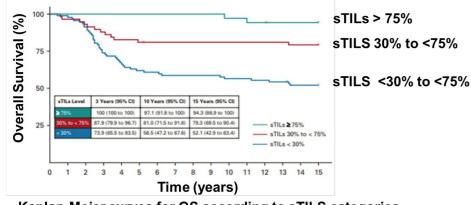
VEGFR-3 % of surface positive score - H score

VEGFR-3 RNA signature

HGS-OC patients and EVT801

First clinical data suggests a beneficial effect

EVT801:


- EVT801 induces synergistic activity with immune checkpoint therapies in the preclinical studies
- First clinical data shows that EVT801 could be beneficial for high grade serous ovarian cancer (HGS-OC)

BUT...

- Immune checkpoint therapies are not recommended in HGS-OC
- Platinum/taxane chemotherapies (+/- Bevacizumab) are SoC (+PARP inh. for HGS-OC patients with mutant BRCA1/2 or HR defective)

However, increased stromal TILs, as seen with EVT801, have been associated with a strong prognostic factor for overall survival in TNBC & HGS-OC

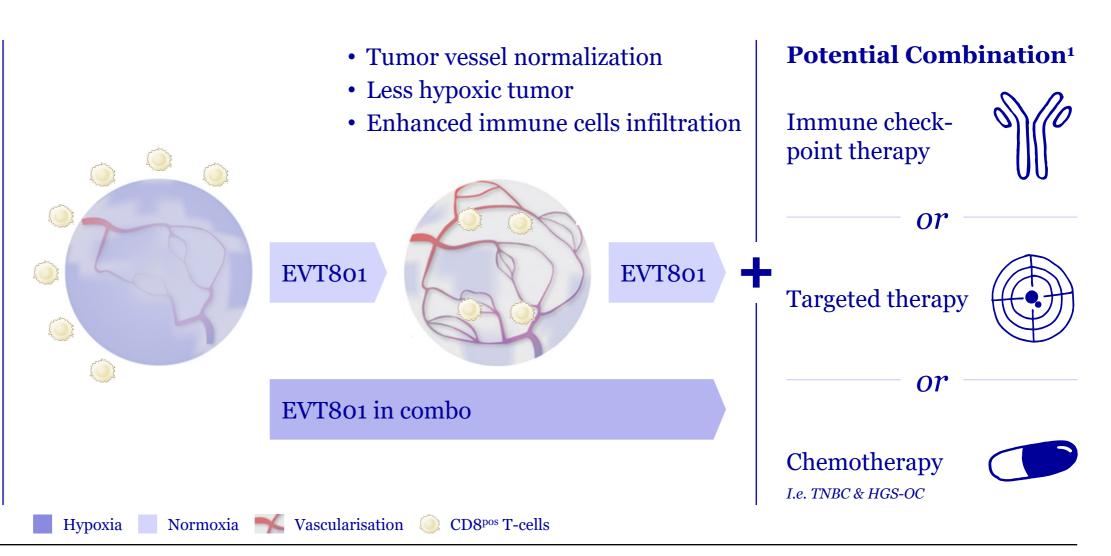
- In patients treated with and without (neo)-adjuvant chemotherapy
- Survival is strongly correlated with CD8+ TILs on immune inflamed phenotype than in immune exclude

Kaplan-Meier curves for OS according to sTILS categories in patients with TNBC T2/3 tumors

Understanding factors driving T-cell infiltration will be key to unravel the clinical outcome heterogeneity.

Identifying new drugs that drive T-cell infiltration into the tumor would be pivotal for:

- Investigating (neo)adjuvant chemotherapy deescalation strategies
- Identifying select subsets of OC patients who may benefit from new therapies


Overall EVT801 combination strategy for clinical trial phase 2

Hypothesis coming from high grade serous ovarian cancer patients' analysis

Working hypothesis for EVT801 to enhance the benefit of current SoC (add-on) in multiple cancer types:

Patient characterization

- IHC
 - CD8^{neg} or only at the edge
 - VEGFR-3^{pos}
 - CA9^{pos}
- mRNA signature
 - VEGFR3 high
 - PD1 response
 - Hypoxia?

Acknowledgments

Mark Witthaker

Ian Hunneyball

Michael Paillasse

Lionel Vidaud

Eric Cogo

Lise Davenne

Céline Poussereau-Pomie Marie

Mandron

Cristina Costantin

Giuseppe Damato

Nicholas Johnson

Geraldine Parenty

Michael Esquerre

Ryan Brady

Pierre Fons

Evotec Translational Biomarker Team

Evotec Clinical Operations team

Michael Fitzgerald Jon Friend

Carlos Gomes Roca

Philippe Cassier

Jean-Pierre Delord

Maha Ayyoub

Christophe Caux

Philippe Rochaix

IUCT-Oncopole Clinical Team

Biological Resources Centre (Dr Anne Gomes-

Mascard)

The patients & their families

Pierre Fons

VP Translational Biomarkers Pierre.fons@evotec.com

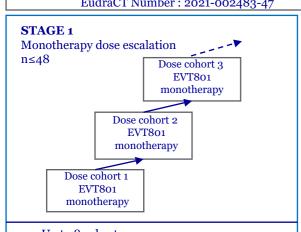
John Friend

CEO Kazia Therapeutics john.friend@kaziatherapeutics.com

EVT801, started enrollment for its first-in-human study

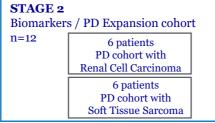
EVT801 was licensed to Kazia therapeutics in April 2021

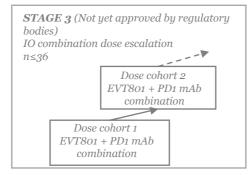
A Phase 1, First-in-Human, Open-Label Study to Assess the Safety, Tolerability and Pharmacokinetics of EVT801 in Patients with Advanced Solid Tumours


MTD

RP₂D

Sponsor: Kazia Therapeutics Ltd Product: EVT801


EudraCT Number: 2021-002483-47


Clinical sites (France only): IUCT-Oncopole, Toulouse - PI: Dr Gomez-Roca

- Up to 8 cohorts
- Single-patient cohorts initially; expand to 3+3 when toxicity is encountered
- Mixed population of advanced solid tumors
- Doses from 50 mg QD to 800 mg BID

Centre Léon Bérard, Lyon – PI : Dr Philippe Cassier

Stage 2: RCC: renal cell carcinoma; STS: soft tissue sarcoma; High grade serous (HGS) ovarian cancer under consideration

Approvals from regulatory bodies obtained in September 2021

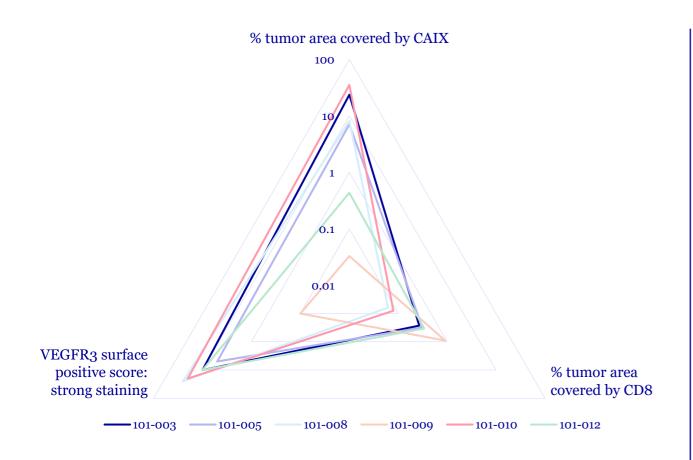
- First-Patient-In in Oct 2021
- 2 clinical sites in France (Toulouse IUCT and Lyon CLB)

Primary Objective

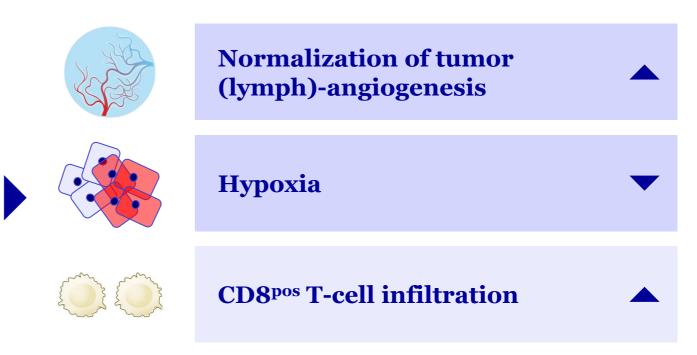
- · To evaluate the safety and tolerability of EVT801 in subjects with advanced or metastatic solid tumours
- To determine the maximum tolerated dose (MTD) and / or a recommended Phase 2 dose (RP2D) of EVT801 when administered daily to subjects with advanced or metastatic solid tumours

Secondary Objectives

- To characterise the pharmacokinetics (PK) of EVT801 following administration in an oral capsule formulation
- To identify active metabolites of EVT801 in plasma
- To determine preliminary anti-tumour activity of EVT801 via assessment of overall response rate (ORR)


Exploratory Objectives

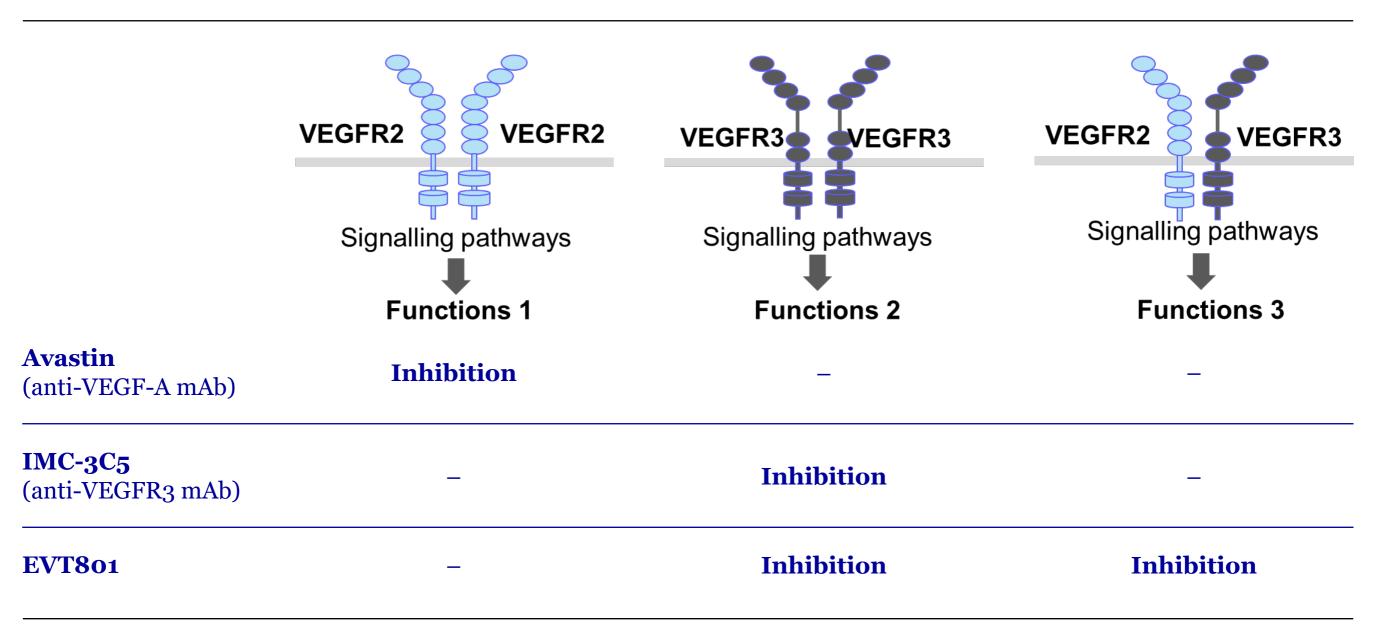
- To explore the pharmacodynamic effects of EVT801
- To calculate progression-free survival (PFS) and overall survival (OS) for patients treated with EVT801
- To investigate potential biomarkers of activity of EVT801 by biochemical and transcriptomics analysis of blood and tumour samples
- To correlate PD response and ORR to VEGFR3 expression in tumour
- · To explore effects of EVT801 on the tumour immune microenvironment


Overview of IHC quantifications and scoring for all ovarian cancer patients

Preliminary results

In ovarian cancers patients, high VEGFR3 expression in vessels seems to be associated with a highest level of hypoxia and to a reduced CD8 infiltration

EVT801 pre-clinical activity on tumour microenvironment



Hypoxic ovarian tumor poorly infiltrated with CD8⁺ T-cells and with high VEGFR3 expression needs to be considered for EVT801 treatment

EVT801 has a unique MoA in comparison to anti-angiogenic mAb

VEGFR-2/-3 heterodimers are pivotal for tumor angiogenesis¹⁻³

EVT801 activity is correlated with VEGFR3 expression

Basis for patient selection & trial stratification

VEGFR ₃	(level))
V LOI 10	$(10^{\circ}10^$	

	VEOLG (level)			
Tumor Model	Model	Tumor	Stroma	T/C ratio¹
Models with tumor cells	expressing VEGFR3			
BNL-R3 HCC	Ectopic Syngeneic	++++	NA	10%
NCIH-1703 Lung cancer	Ectopic Immunodeficient	+++	NA	27%
PDX RT-001-HAM Rhabdomyosarcoma	Ectopic Immunodeficient	+	NA	41%
Models with high VEGF	R3 expression in stroma			
RIP1.Tag2 Pancreas	Transgenic Syngeneic	-	+++	- 35%²
DEN HCC	Chemo-induced Syngeneic	-	+++	9%²
Models with low VEGFR	3 expression in stroma (for combin	ation with PD1 mAb)		
4T1 Breast cancer	orthotopic Syngeneic mouse	-	+	48%
CT26 CRC	Ectopic Syngeneic mouse	-	NA	59% (NS)