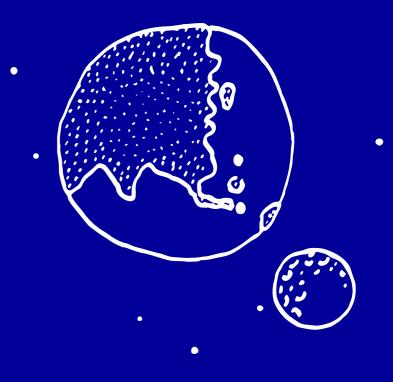


#RESEARCHNEVERSTOPS

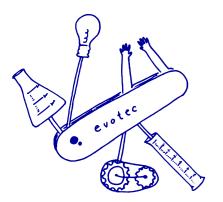
Cancer Discovery at Evotec

Integrated Research and Development



Introduction to Evotec Cancer Discovery
 In vitro expertise
 In vivo expertise
 Translational biomarkers

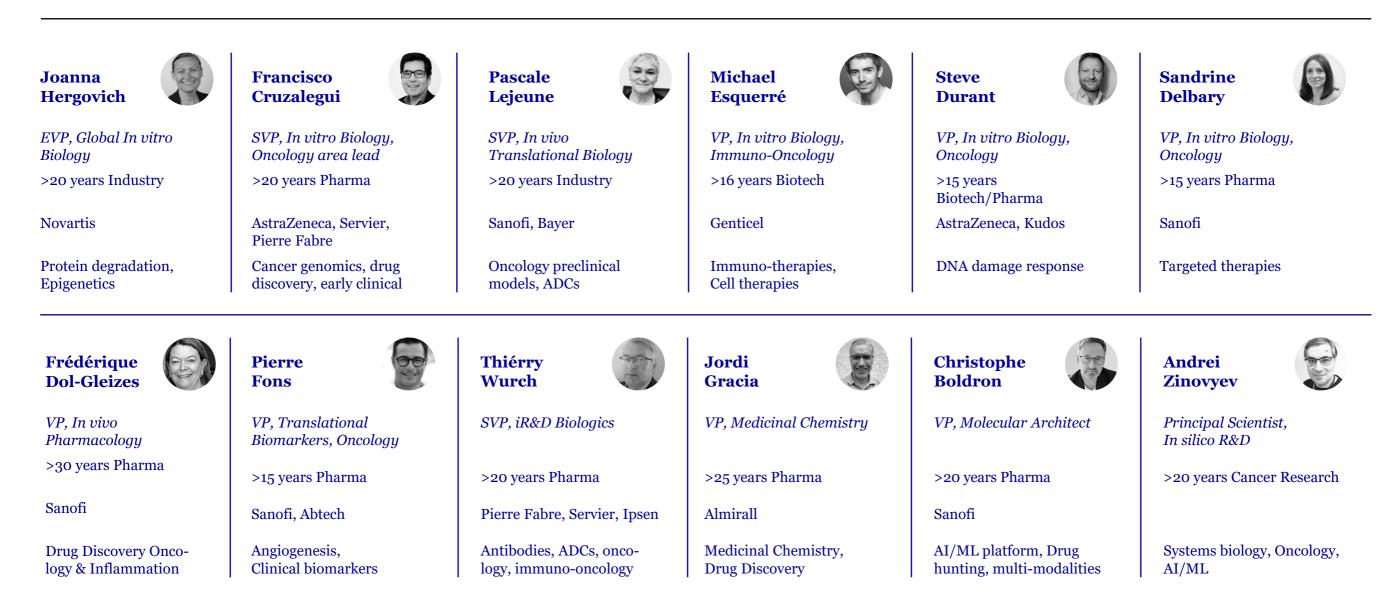
Introduction to Evotec Cancer Discovery
 In vitro expertise
 In vivo expertise
 Translational biomarkers


Evotec Cancer Discovery in a nutshell

Strong expertise and capabilities

Evotec's Cancer expertise

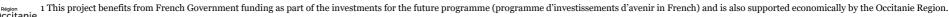
- Highly experienced team with deep disease knowledge and patient-focused thinking
- Knowledge of the competitive landscape in all approaches in cancer therapeutics
- Strong expertise in genomic/signalling drivers, immuno-oncology, protein degradation, DNA damage response, epigenetics and tumor metabolism


Capabilities dedicated to Cancer Discovery

- 160 staff *in vitro* team totally dedicated to cancer drug discovery and biomarkers, two thirds PhD/MSc level
- Over 30 staff in vivo oncology/immuno-oncology team
- Large dedicated facilities:
 - 1,400 sqm (15,000 sqft) *in vitro* labs
 - 1,000 sqm (10,000 sqft) cancer-focused animal facility

A team with a track record of achievement and delivery

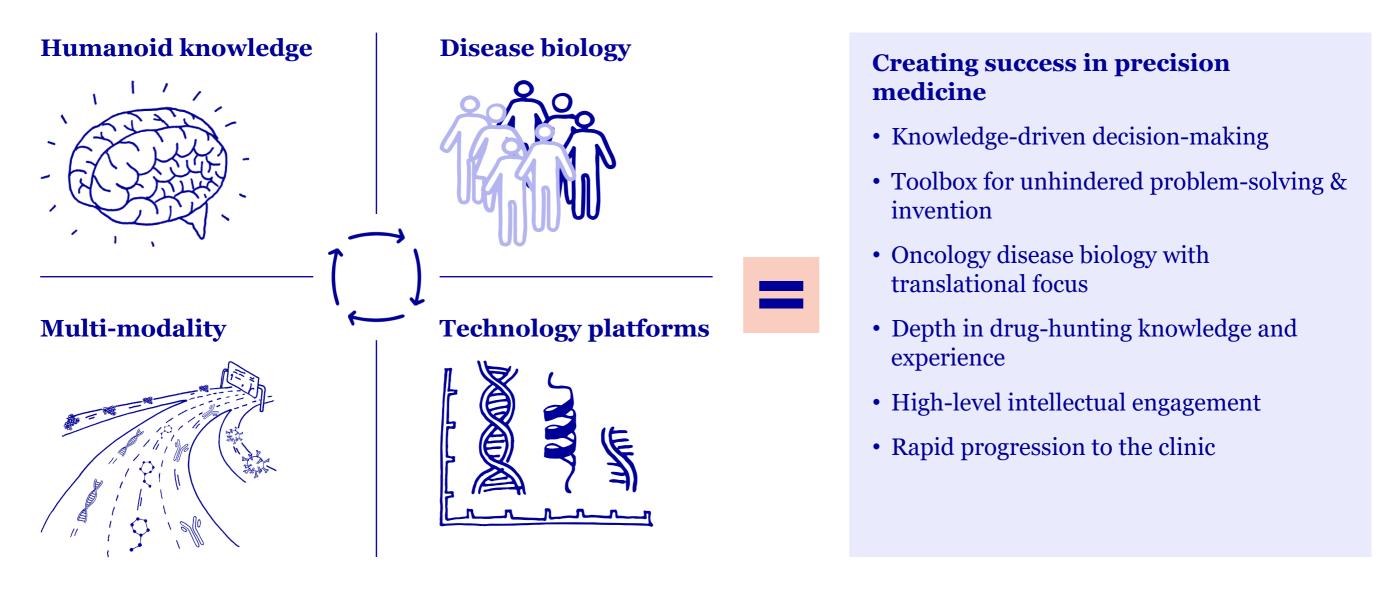
Expert cancer drug hunters working collaboratively with our partners


Evotec Toulouse is embedded in a cancer biomedical campus

Combining medical and research excellence via proximity

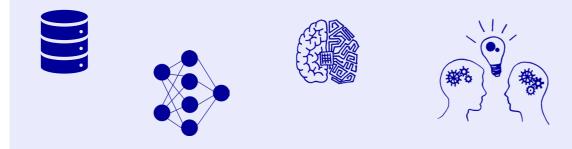
IUCT-Oncopole is a highly recognised University hospital (~500M€ public funding)

- Combining medical and research excellence (IUCT, CRCT) in Oncology
- Incubator for midsize pharmaceutical and biotech companies
- Example of working together:
 - Kazia (EVT801) supported by Evotec, ongoing phase I trial at Oncopole
 - Exploratory biomarker assessments are performed by Evotec



Fitting the pieces correctly together

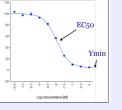
Establishing a robust Integrated Drug Discovery portfolio of projects

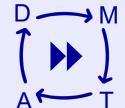


Small molecules: reducing timelines to candidate

Powerful combination of AI/ML and efficient DMTA

Advanced data curation and data-driven quality design

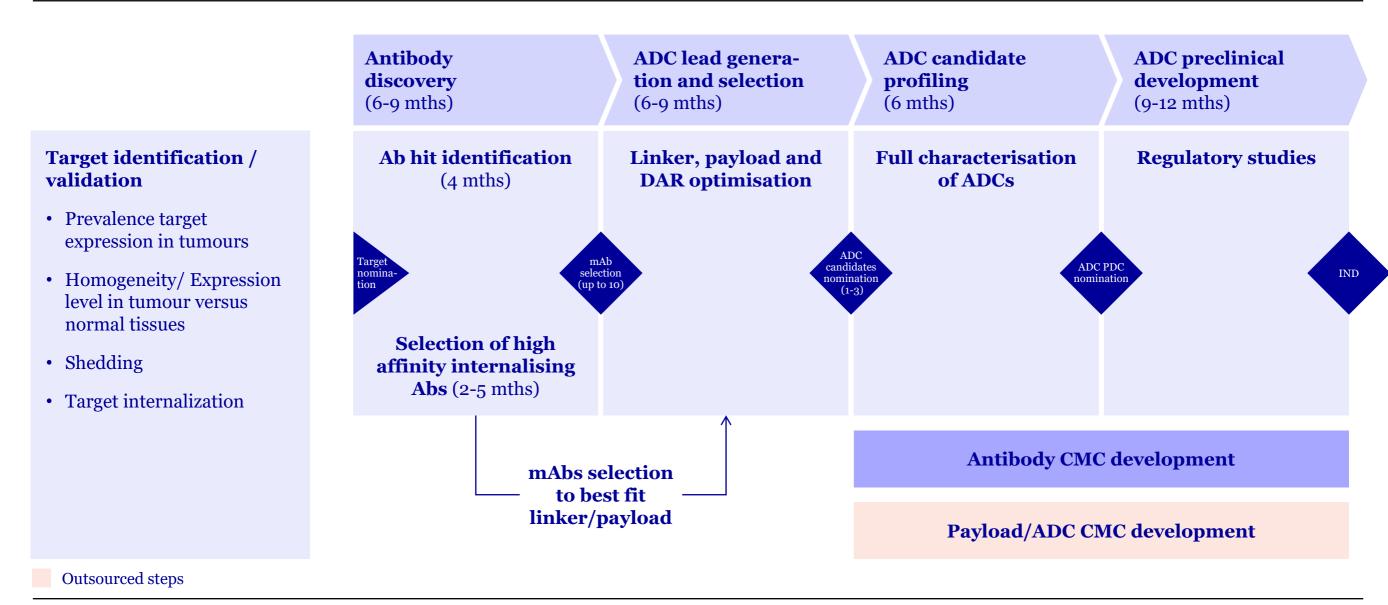

- Careful selection, cleaning and organisation of data for predictive modelling
- Data analysis and interpretation for project enablement and hypothesis generation
- Generative AI/ML & advanced computational design combined with drug hunting expertise



High-Speed Synthesis and efficient DMTA

- High speed synthesis (median TAT of 7 days) supported by access to state-of-the-art synthetic technologies
- Rapid DMTA cycles are enabled by full integration of Molecular Architects, Chemistry, DMPK and Biology
- Therapeutic area and development expertise, enables accelerated progression from LO to PDC and to IND

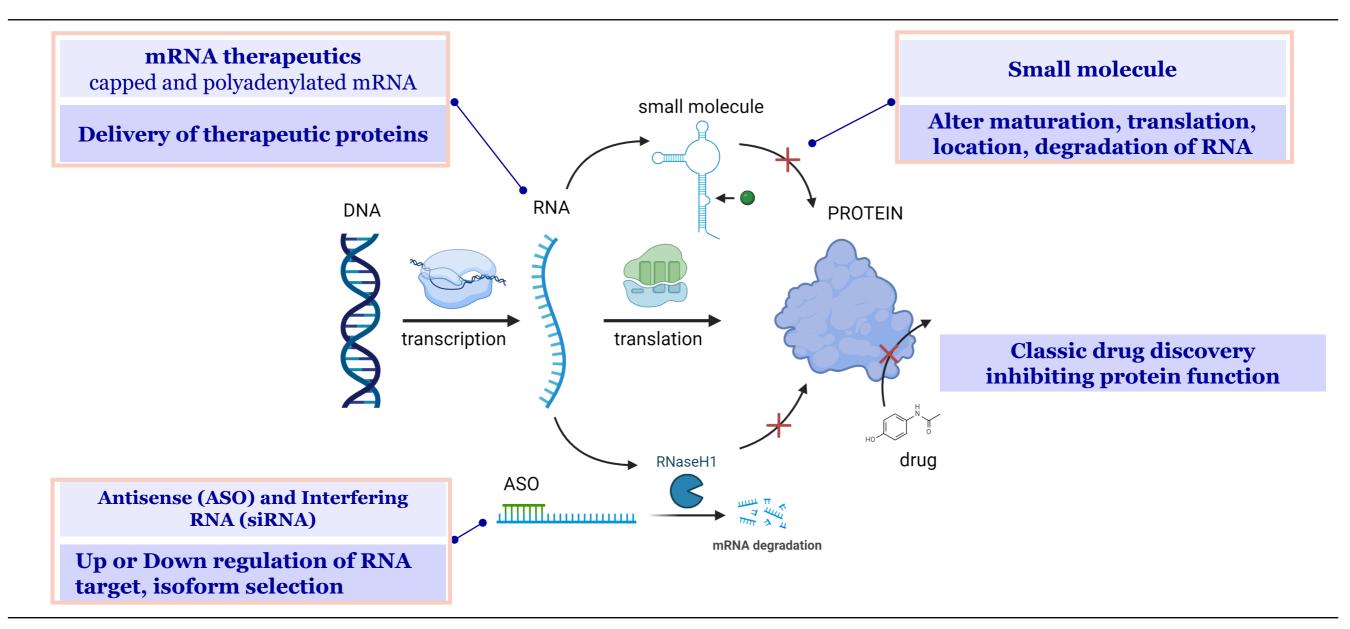
Evotec Biologics


Generation of fully human antibodies: from traditional platforms to A.I.-driven approaches

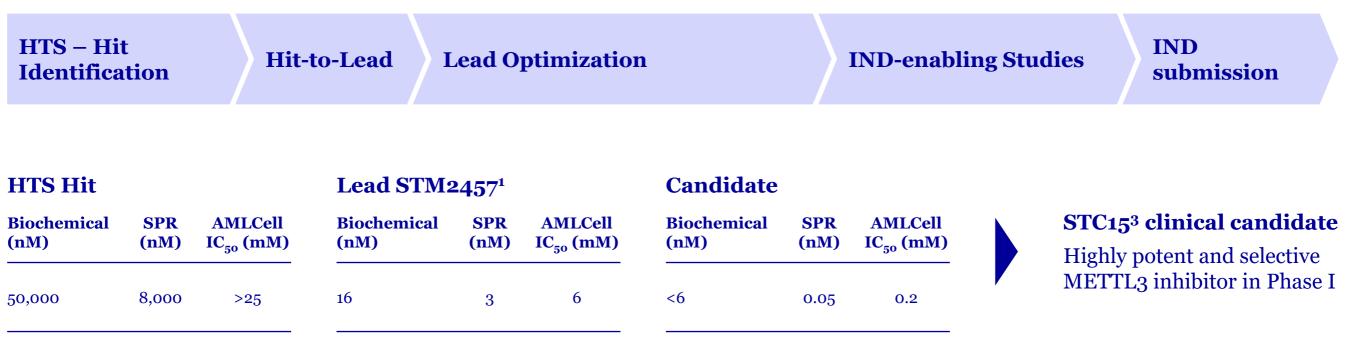
	in vivo	in v	itro	in silico
Humanized mice- enabled hybridoma platform	B cell technology	Exploration of natural immune repertoire using phage display	J.HAL [®] , A.I designed phage and yeast libraries	In silico Ab design (prototype stage)
 Key distinguishing features Hybridoma generation merged with automated clone picking Screening of thousands of monoclonal candidates simultaneously 	 Key distinguishing features Direct screening of hundreds of thousands of B cells upon immunization or natural immune repertoire No species restriction 	 Key distinguishing features Immune library generation upon immunization or natural infection In vitro selection of rare antibodies No species restriction 	 Key distinguishing features Highly diverse A.I. designed human library Time + cost savings for therapeutic development 	 Key distinguishing features State-of-the-art platform to identify optimal binders <i>in silico</i> Fastest way to generate binders

Unique and integrated ADC drug discovery and development

One-stop shop: From target ID to IND (with multiple entry points)



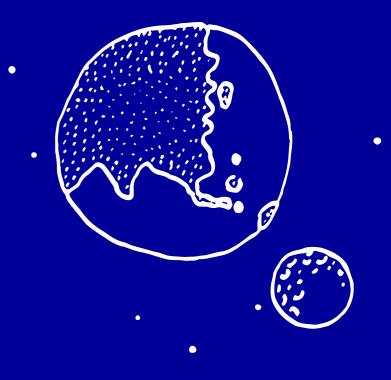
PAGE 10


Targeting RNA

Applying multiple modalities with new target biology

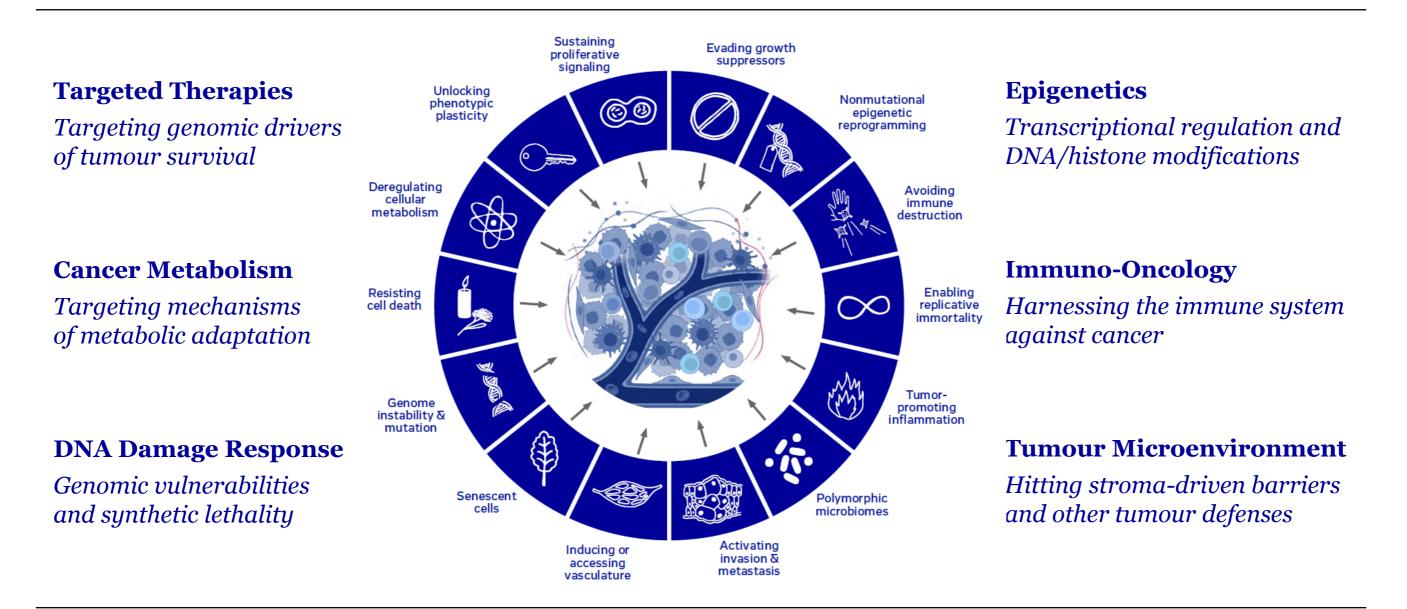
Case study: integrated drug discovery program for STORM Therapeutics

From target validation to candidate selection: first-in-class catalytic inhibitor of METTL3

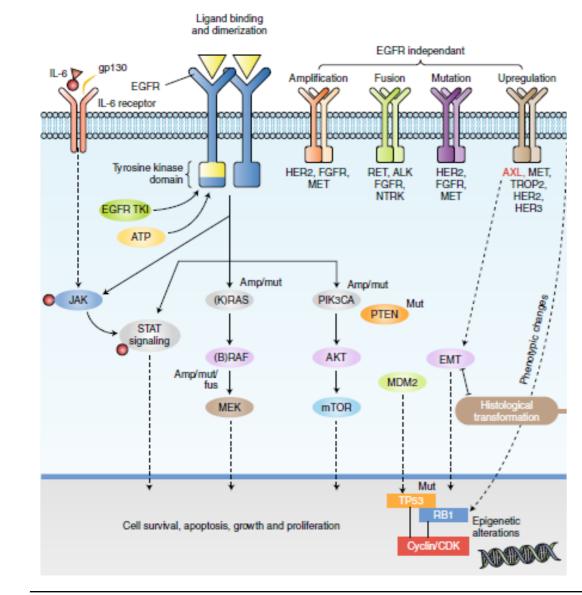


Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia

https://doi.org/10.1038/s41586-021-03536-w	Eliza Yankova ^{1,2,3,13} , Wesley Blackaby ^{3,13} , Mark Albertella ³ , Justyna Rak ^{2,4} ,
Received: 18 December 2020	Etienne De Braekeleer ^{2,4} , Georgia Tsagkogeorga ¹³ , Ewa S. Pilka ⁵ , Demetrios Aspris ^{2,6} , Dan Leggate ³ , Alan G. Hendrick ³ , Natalie A. Webster ³ , Byron Andrews ³ , Richard Fosbeary ³ ,
Accepted: 12 April 2021	Patrick Guest ³ , Nerea Irigoyen ⁷ , Maria Eleftheriou ¹ , Malgorzata Gozdecka ² , Joao M. L. Dias ⁸ ,
Published online: 26 April 2021	Andrew J. Bannister ⁹ , Binje Vick ^{10,11} , Irmela Jeremias ^{10,11,2} , George S. Vassiliou ^{24,6} , Oliver Rausch ³ , Konstantinos Tzelepis ^{1,2,4,9} & Tony Kouzarides ^{1,9}
Chack for undator	Ouver Rausen , Ronstantinos izetepis a Tony Rouzandes

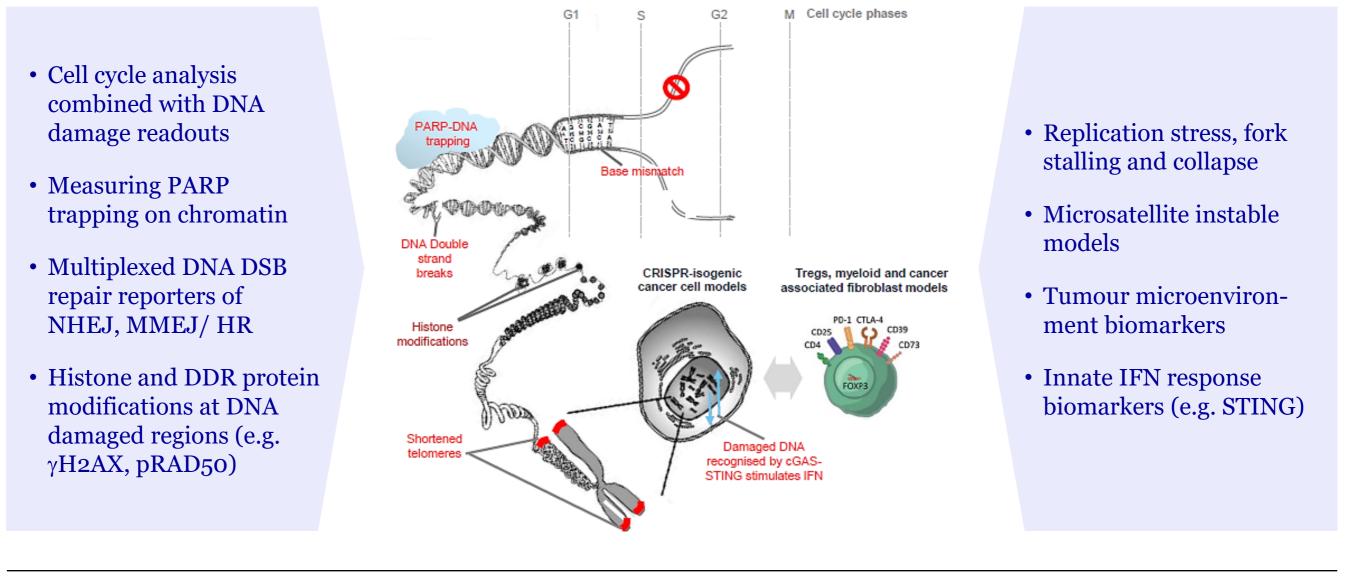


Introduction to Evotec Cancer Discovery
 In vitro expertise
 In vivo expertise
 Translational biomarkers


Our expertise in key cancer biology areas

Covering important cancer hallmarks and therapeutic interventions

Genomic and signalling drivers

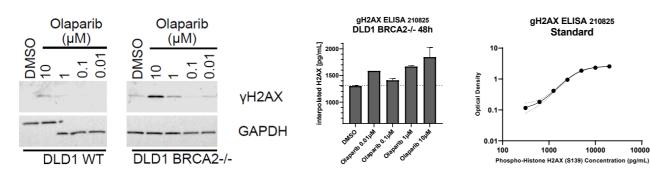

Expertise in GTPases, kinases and phosphorylation readouts

- Cancer signalling drivers:
 - Model generation for clinically relevant genomic alterations
 - Mutant receptor and non-receptor Tyr kinases (e.g. EGFR, FGFR, ALK fusions)
 - Ser/Thr kinases (RAF, CDKs)
 - Signalling switches (GTPase e.g. KRAS)
- New binding modes and modalities explored to increase selectivity:
 - Allosteric inhibition
 - Protein degradation
 - Protein-protein interactions
 - RNA binders
- Transcription factors and chromatin regulators:
 - Reporter assays and gene expression readouts
 - Epigenetic signatures

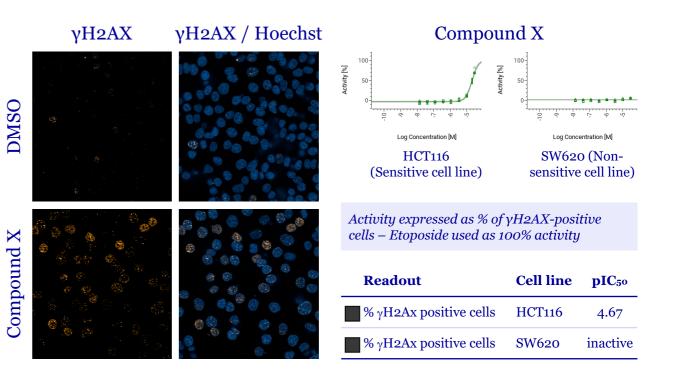
World-class capabilities in measuring the DNA Damage Response

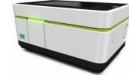
Biochemical, cellular assays, *in vivo* models, and biomarkers for DDR drug discovery

Case study: DNA Double Strand Break detection


Quantifying γ H2AX foci and Rad51 as a proxy for DSB induction using high-content imaging

Rationale:


- Double-Strand breaks induce γ H2AX foci formation
- Phosphorylation on Serine 139 is mediated by the kinases ATM, ATR and DNA-PK and is an early cellular response to DSBs


• Throughput:

- 27 compounds in dose-response
- Suitable for Tier1 assay
- **Possibility of multiplexing** (Up to 4 colours): with other biomarkers (ex Rad51 for HR) or with cell cycle marker (ex EdU, H3S10-P)
- Alternative technologies to be considered for *in vivo* studies:
 - Detection of γ H2AX by Western Blot and ELISA

Case study: screening in HCT116 using Operetta® technology

γH2AX detection also developed in SW480, RKO, DLD1, Kuramochi, U2OS and HT1299 cell lines

A broad range of Oncology in vitro assays

Validated assays for modality-agnostic drug discovery support

1 Target validation and deconvolution approaches RNAi/CRISPR, PALMS/CTP	 Extensive portfolio of biochemical, biophysical and cell assay systems 	 2D/3D assay formats and patient-derived material PBMCs, tumour, cell lines 	
Signal transduction	HTRF, ATPGlo, MSD, ELISA, Dot blot/Western, prote	eomics etc.	
Tumour metabolism	Seahorse, Oxography, ATP, metabolomics etc.		
Immuno-oncology	Flow cytometry and sorting, Incucyte, IHC, ELISpot, M	MLR, MSD etc.	
Tumour metastasis and vascularisation	In vitro angiogenesis, hypoxic chambers, transwell etc	c.	
Apoptosis	Incucyte, IF/IHC, flow cytometry, Western etc.		
Epigenetics	RF/MS, SPR, HTRF, ChIP, TLDA/RT-qPCR, proteomics etc.		
DNA damage response	Reporter assays, Operetta, synthetic lethality, replication	ion stress etc.	
Protein homeostasis	HiBit assays, nanoBRET, ubiquitination, Operetta, pro	oteomics etc.	
Imaging and phenotypic assays	Operetta, Incucyte, confocal microscopy, qPCR etc.		

3D cell assays developed at Evotec Oncology

Models and read-outs

3D models	 Cancer cell growth in 3D (suspension or matrix-embedded spheroids & col Migration/invasion in a 3D matrix Assays with co-culture of tumor cells with primary Patient derived organoids (PDOs) 		Hoesch EpCAM Viment
Proliferation / Viability / cell death measurements	 Colony or spheroid number, size, roundness CellTiter Glo (lytic system) or RealTime Glo (non-lytic) Dye-based apoptosis/necrosis assay, immunostaining 	Day 4 Volume RNAMMax/ 96-well 0.2µl 0.3µl 0.4µl 0.5µl 0.5µl	
			Coc EF

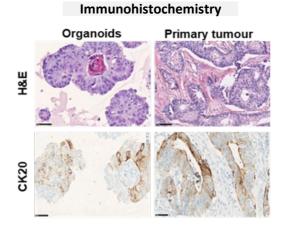
Target expression (coupled to RealTime Glo) mRNA levels (RT-qPCR) or protein levels (Western blot/JESS)

- Single cell mRNA sequencing
- Confocal imaging

From Human Primary Samples to 3D Cultures

Overview of Evotec Capabilities for Patient-derived Organoid (PDO) culture

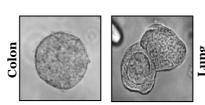
Establishment and characterization of PDO culture:

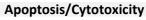

- Strong network with Toulouse hospital allowing access to healthy tissue, tumor resection & blood
- Setup high quality protocols for tissue dissociation suitable with:
 - Cancer cell and TME characterization (single cell RNA sequencing and Flow Cytometry)
 - Ex vivo 3D culture of PDO in Matrigel domes

Ex vivo platform (PDO)


- Gene signature & biomarker secretion analysis
- 3D confocal imaging, IHC, Tumour metabolism
- Compound testing and TV study using siPOOLs (Lipofection)
- Viability (RealTime-GLO)/Apoptosis/Cell death plus secondary assay:
 - qPCR on 20-30 genes
 - protein detection via JESS / Immunofluorescence

Access to PDO models:

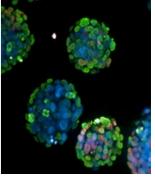

- □ Evotec holds a MSA with a partner providing access to a biobank of >500 PDO models from various cancer indications.
- Additionally, EVT's partner can establish new PDO lines from fresh patient material, either sourced by the partner, Evotec or our clients



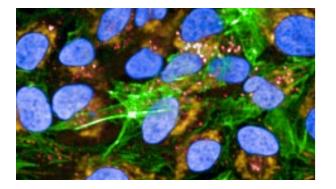
Single cell RNA sequencing



Brightfield analysis

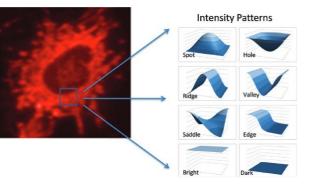


Immunofluorescence

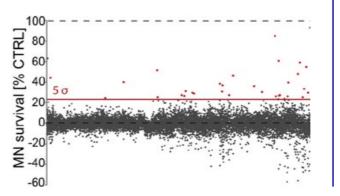


High content imaging and analysis at Evotec

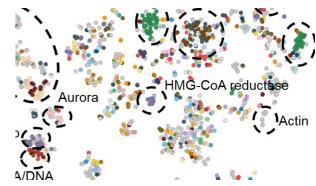
A dedicated team of specialists & best-in-class imaging hardware


Instrumentation

Best in class imaging devices for HCI and HCS acquisition, globally operated according to professional industry standards


Image Analysis

Cutting edge image analysis capabilities and broad portfolio of efficient and robust readouts


Data Analysis

State of the art data analysis and machine learning/ artificial intelligence-based algorithms

Data Science

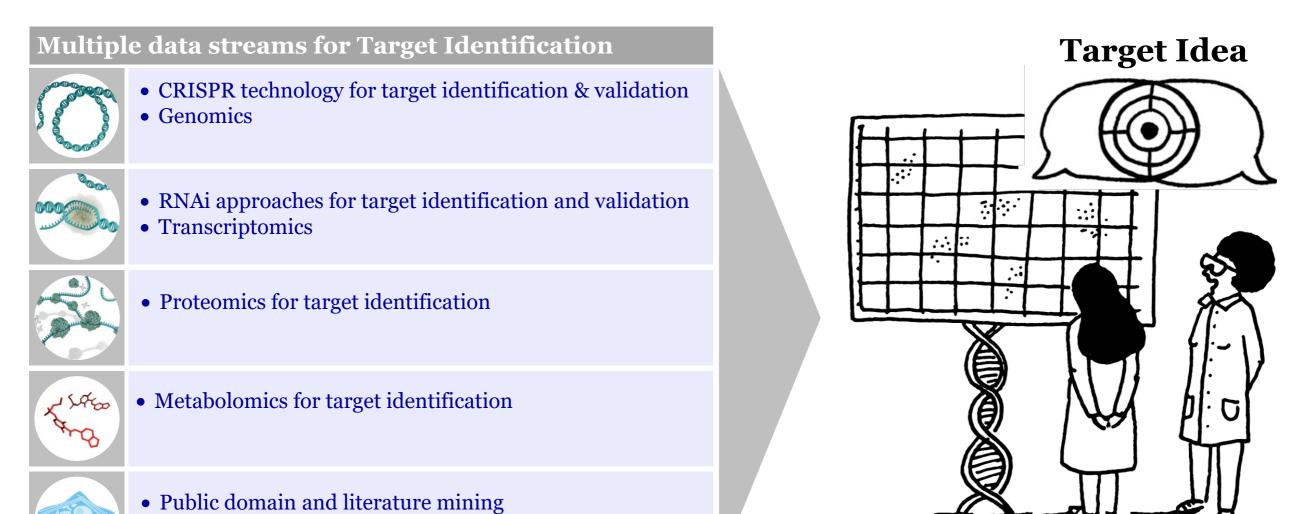
Proven track record of successfully completed projects based on applied cellular and tissue image analysis

Workflows

Experienced team of scientists working in close cooperation with biological application experts

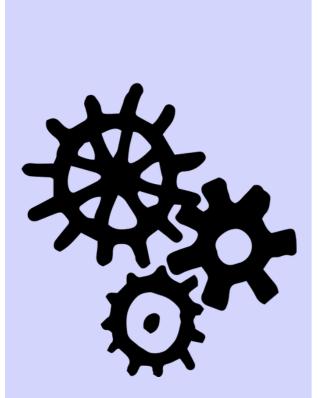
Data Management

Applied big data handling


High Performance Computing Fast and reliable data processing

New Solutions Professional and flexible development

Target Identification @ Evotec


Integrating multiple data streams for hypothesis generation

• Bioinformatics

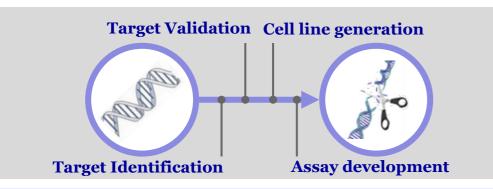
The 3 R's for Target Validation

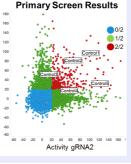
Integrating relevant disease model, target manipulation and readout

The right model

- Relevant *in vitro* and *in vivo* models
- Focus on primary and iPS derived cells
- In-depth disease understanding

The right tool

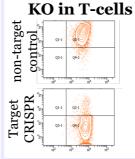

- Cutting edge genetic toolbox
- Engineering models to mimic disease
- Long term experience in target manipulation


The right readout

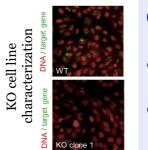
- Target specific assays
- In depth omics and information rich readouts
- Cutting edge bioinformatic tools for analysis

A CRISPR Toolbox for Target Identification and Validation

Different solutions based on project needs



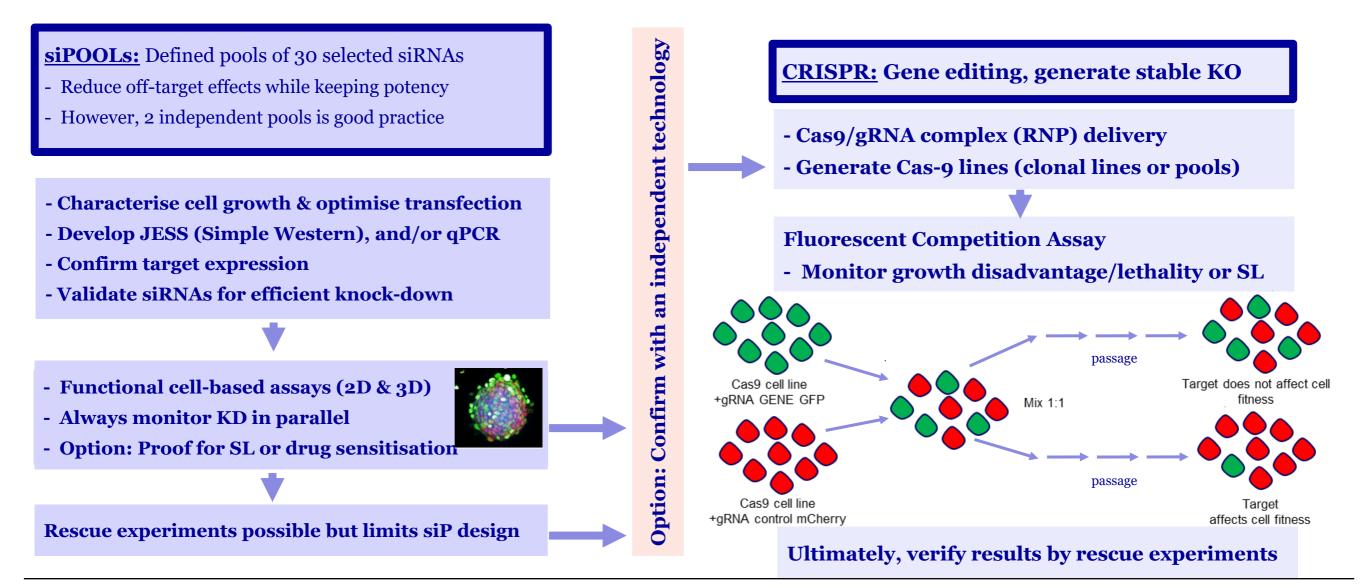
Target identification:


- Whole genome and genome subset screening
- Flexible screening formats and approaches

- Application of CRISPR and other genetic approaches at different stages of drug discovery process
- Dedicated team of scientists with broad experience in different disease areas
- Plug and play integration into existing Evotec platforms
- Close interaction with project teams ensures broad applicability and high success rates

^{ls} Target Validation:

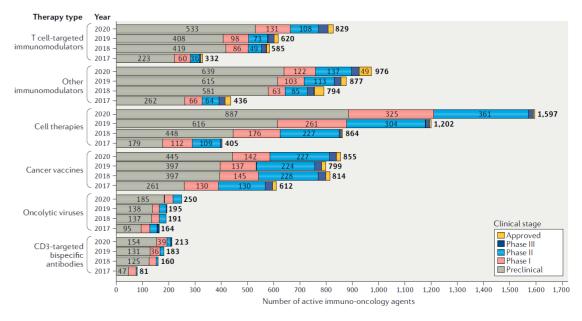
- Validation of individual targets in disease relevant models
- Dedicated workflows for knock-out validation


Cell line generation:

- Workflows for CRISPR mediated genome engineering
- Genetic and phenotypic cell line characterization

Target Validation Capabilities by CRISPR and RNAi

The ideal modular RNAi – CRISPR combined approach

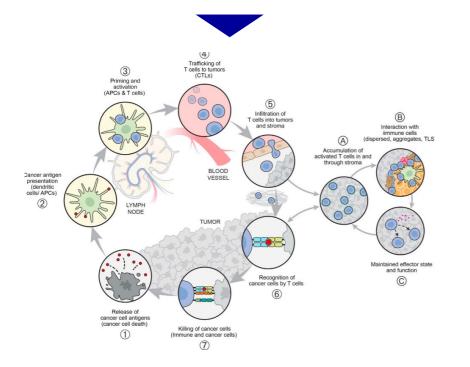

Immuno-Oncology (IO) at Evotec

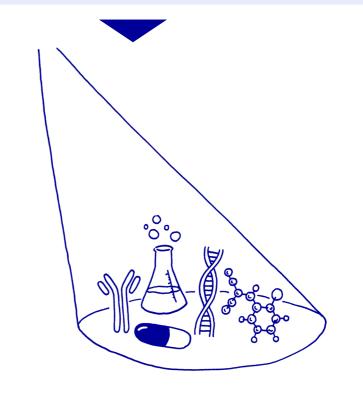
Campus Curie in Toulouse, France: the core location for Cancer Immunotherapy

- Over 50 highly skilled and experienced Immunologists working in the IO space (*in vitro*, *ex vivo* & *in vivo*)
- Since 2015, Evotec has successfully developed partnerships in the IO field as illustrated by many press releases¹
- Since 2021, two IO drugs have been moved to human clinical trials in collaboration with: Exscientia (A_{2A}R antagonist) and Kazia Therapeutics (EVT801)
- **Collaboration with Translational Biomarkers** to develop relevant translational evaluation of cancer immunotherapeutics on patient samples
- Bringing Immunology expertise to projects in the **I&I Therapeutic Area**
- Supporting our Evotec's Oncology R&D portfolio highly focused on IO:
 - Biologics: Immune Cell Engagers
 - Next generation Cell Therapies in Oncology with various iPSCsderived immune cell types (e.g. iNK cells): presented at AACR23, AACR24 and SITC23

Cancer Immunotherapy is the fastest growing area within Oncology

Building on two key pillars for Immuno-Oncology drug discovery

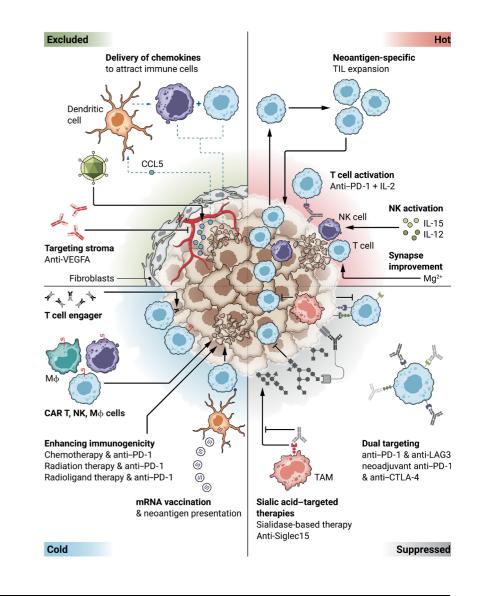

Immunology understanding & versatility in therapeutic modalities


In-depth Immunology knowledge on:

- Broad range of immune cell types
- Various targets
- On both the liquid and solid tumor space

Broad experience from Small Molecules to Cell Therapy:

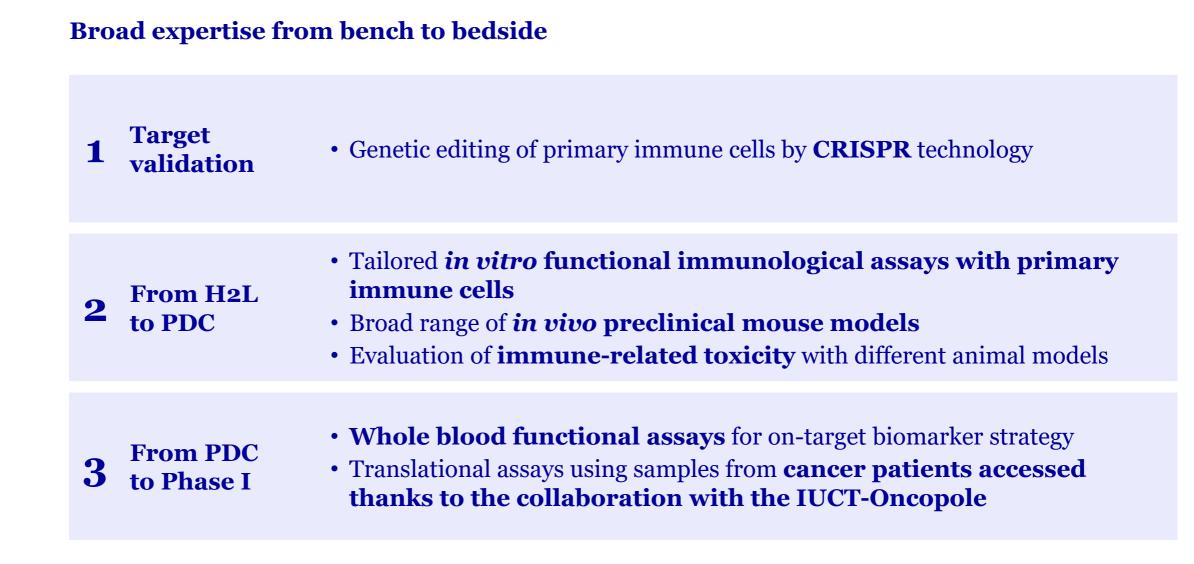
- Small molecules
- **2 Biologics:** antibodies, bispecific, cancer vaccines, peptides
 - Oligonucleotides: ASO, RNA
 - Cell Therapy

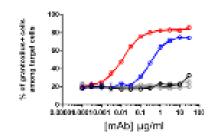

IO is a multi-modality therapeutic area: the combination thinking

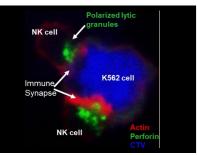
Checkpoint inhibition is only the tip of the Cancer Immunotherapy iceberg

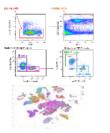
- Checkpoint inhibitors are blockbusters and have transformed cancer care since a decade (first one approved in 2011¹):
 - Now used as 1st line treatment in many indications (>65 FDA approvals in 20 different indications²)
 - Low response rate (around 20%²) but strong and long-term clinical efficacy and reduced side effects as compared to conventional chemo (outside of inflammatory / auto-immunity AE)
- **Many challenges** are associated such as low response rate, toxicity, additional immune escape mechanisms (opportunity for combination therapy)

Evotec Immuno-Oncology team perspective: *"the main challenge for the next decade will be to unravel why some patients respond and the others don't"* – by:


- **Evaluating combination** with new ICTs in development and other immunotherapies (e.g. vaccines, cell therapy, bispecific Ab, etc.) / chemotherapies / radiotherapy
- Integrating knowledge about biomarkers into patient selection in trials


How Evotec IO Scientists are supporting Drug Discovery programs


Of mice and men: a drug discovery continuum including cancer patient samples


Immuno-Oncology Therapeutic Aera in a nutshell

Building tailored approaches for successful drug discovery programs

Functional in vitro Immunological assays

- Supporting small molecules, biologics and cell therapy programs
- T-cells ($\alpha\beta \& \gamma\delta$), Treg, NK cells, B-cells, Neutrophils, M1/M2, Dendritic Cells, MDSCs
- Proliferation, cytokines production, killing, tracking of surface markers, suppression assay

Visualising Immune cells "in action" at the contact of tumour cells

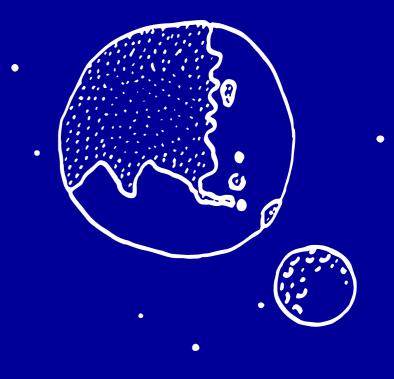
- Evaluation of IO products at the single-cell level monitoring Immunological Synapse
- Quantification of the data using Metamorph software
- High-speed imaging of the Immunological Synapse (ImageStream X)
- 384w plate assays with High-throughput confocal imager: Operetta

Preclinical in vivo rodents models in Immuno-Oncology

- Syngeneic tumour models and human xenograft models with humanized mice
- Therapeutic efficacy, PK/PD, analyse of the TME, ex vivo functional assays, etc.

Filling the gap in drug discovery by accessing cancer patient samples

- Complex flow-cytometry based analyses on fresh human tumour resections, gene signature
- Functional assays on the blood for target engagement validation, etc.
- Additional technologies for biomarkers identification: scRNAseq, TCR sequencing, proteomics, metabolomics, etc.


Flow Cytometry platform: core expertise for Immunology

A dynamic flow cytometry facility with a dedicate expert team & powerful instruments

Introduction to Evotec Cancer Discovery
 In vitro expertise
 In vivo expertise
 Translational biomarkers

State-of-the-art animal facility and in vivo expertise in Toulouse

In vivo team of ~90 staff

- Drug discovery and research services (non-GLP) include
 - PK studies supported by formulation assay/screening
 - PK/PD studies in accordance with *in vitro* assays and identification of PD biomarkers
 - Efficacy studies
 - Early discovery toxicology: type/ severity of injury, MTD, NOAEL, dose-exposure relationship, therapeutic index ...
 - **Biomarker discovery** and hypothesis testing/validation
- Disease area expertise
 - Oncology and immuno-oncology
 - Immunology and inflammation
 - **BSL3 infectious disease** (tuberculosis, SARS-Cov-2 ...)

- AAALAC accredited animal facility
- Area: >4,000 m² animal facility with dedicated procedure & surgery rooms, drug preparation rooms, cell culture room
- Animal capacity: 46,440 mice, 5,400 rats, 1,080 gerbils and hamster, 540 guinea pigs and 540 rabbits
- 3 in-house veterinarians

Over 30 scientists dedicated to Oncology including 13 scientists specialized in Immuno-Oncology

- In vivo/ex vivo support from early target validation to candidate selection
- Activity fully integrated within drug discovery programs

Building a tailored in vivo approach for the project

In vivo models adapted to the treatment modality

Cancer therapies

Small molecules	
Antibodies (Abs)¹ Ab-conjugates, BITES	
Oligonucleotides (ASO, siRNA)	h
Vaccines	H.
Adoptive cell therapies: FIL, chimeric antigen receptor (CAR) or engineered TCR	
Oncolytic viruses	*
Cytokines therapies	\$.
Radiation	

In vivo models

Xenograft tumour models

- s.c. or othotopic in Immunodeficient mice
- Working with human cancers with the relevance of an *in vivo* host of an *in vivo* host

Syngeneic tumour models

- s.c. or orthotopic in immunocompetent mice
- Featuring full murine immunity and comprehensive stroma

- Immunocompromised mice with a human immune system
- Opportunity to assess immunotherapy efficacy and pharmacodynamics in a human immune-tumour context

Specific models

- In vivo T cell proliferation
- GvHD model
- Immunogenicity/ELISpot
- PDX models outsourced on demand
- **General evaluation and clinical pathology:** clinical signs, body weight, food consumption, hematology (RBC and WBC counts)
- Tumour growth: digital caliper system, in vivo imaging (bioluminescence, fluorescence)
- Target engagement- PD/Biomarkers modulation in relation to compound exposure or biodistribution
- Survival/Relapse efficacy models: Therapeutic index-Driver of efficacy

Extensive expertise in preclinical tumour models

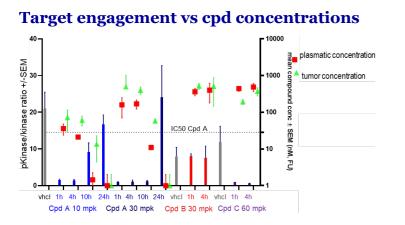
Associated to a broad range of assays/read-outs to fit the therapeutic target

- MODEL set up based on project need
 - Based on therapeutic indication, molecular profile, in vitro work...
 - In immunocompetent, immunocompromised mice or rats or humanized mice
- Orthotopic implantation if tumour environment is required
- Skills in breast, lung, liver, bladder, ovary, leukemic cells implantation ...
- Luciferase-engineered cells for time-course follow up of tumour growth
- PDX models outsourced on demand (established partnership with a number of providers)
- Model identification based on target indication
- Study design: dose and schedule, sampling time points
- Study follow up with the CRO
- Ex vivo, PK analysis of the samples

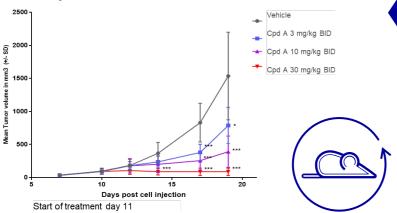


Tissue	Indication / Characteristic features	Site of inoculation	Species
Bladder	Transitional cell carcinoma	s.c. / Intravesical instillation	Murine
Brain	Glioblastoma	s.c.	Human
Breast	TNBC, Her2+, ER+/PR+	s.c. and orthotopic	Human and mouse
Colon	Wild type or BRAC2 deficient, Ras mut	S.C.	Human and mouse
Fibrosarcoma	-	s.c.	Mouse
Kidney	Cell carcimoma or cortical adenocarcinoma	s.c./renal capsule	Human and mouse
Leukemia	AML	S.C.	Human
Liver	p53 wt, null p53, p53 mut	Liver	Human
Lung	NSCLC, SCLC, squamous cell carcinoma	s.c. / intratracheal, transpleural/ Intracranial	Human and mouse
Lymphoma	DLBCL, NH, MCL, T lymphoblasts	S.C.	Human and mouse
Oesophagus	Esophageal squamous cell carcinoma	S.C.	Human
Ovary	High grade serous, clear cell, surface epithelial ovarian cancer	s.c./i.p.	Human and mouse
Pancreas	Ductal adenocarcinoma	S.C.	Human
Skin	Melanoma	s.c. /intradermal	Human and Mouse

Examples of tumour indications for which models have been set up

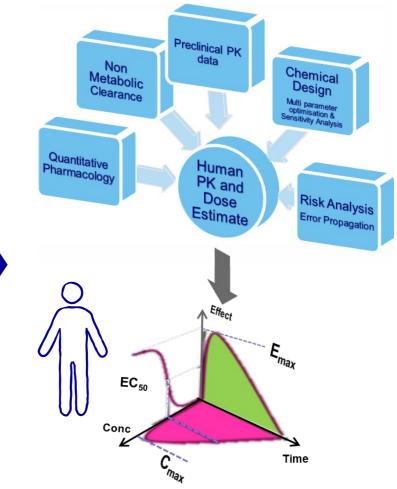

KEY ex vivo READ OUTS:

- Tumour micro-environment: flow cytometry, IHC, Tumour angio/lymphogenesis: anti-CD31/anti-LYVE IHC, Metastasis on xenograft models: Alu ISH, human CK19 IHC
- Cancer metabolism: leading mass spectrometry-based proteomics, metabolomics and lipidomics
- Gene signature and signal transduction: qRT-PCR, RNA-Seq and single cell RNA-Seq transcriptomics supported by proprietary bioinformatics tools for data mining and pathways analysis
- Functional assays with immune cells: proliferation assay, ELISpot, flow cytometry, Cytokines release: MSD & HTRF, ELISA
- Analysis of proteins and phosphoproteins: MSD & HTRF technology, western blot, ELISA, enzyme activity assay
- Discovery & Translational biomarkers
- Compound exposure: bioanalysis; mass spectrometry, ELISA



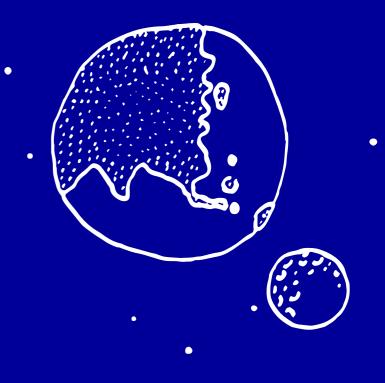
Focusing on developing efficacious and safe drugs in patients

Key elements for an effective *in vivo* translational strategy



Efficacy in relevant disease model

Elucidate PK/PD and PK/efficacy/tox relationship


- Thorough understanding of the biology of the target and appropriate biomarkers
- Confidence in preclinical models: PK, PK/PD, PK/Efficacy and tox understanding
- Mechanistic *ex vivo* & *in vitro* investigations with human and animal cells and tissues (PK and PD)
- Understanding of disposition and clearance mechanisms
- Predict human PK and dose

Drive towards low human dose / exposure to mitigate potential toxicity

Introduction to Evotec Cancer Discovery
 In vitro expertise
 In vivo expertise
 Translational biomarkers

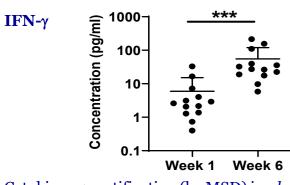
Translational biomarkers at Evotec

Translational biomarkers from Target validation to clinical trials

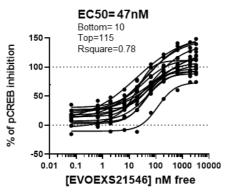
Evotec's translational biomarker department is applied to develop biomarkers strategy for integrated drug discovery projects and to support translational biomarker readouts that are applicable to clinical samples

The team

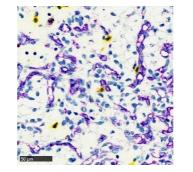
- Global team of >80 scientists
- Strong expertise in biomarkers strategy
- Omics experts from conception to analysis
- GCP capabilities

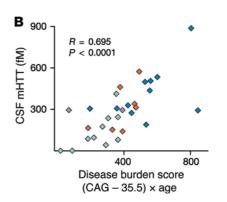

Sample analysis

- Cell lysates & supernatantBody fluids e.g. blood,
- plasma, saliva, CSF
- Animal and human tissues
- *Ex-vivo* assays on patient samples


Platforms

- Biomarkers strategy
- · Human sample access and Human biorepository
- Immunoassays: MSD, TR-FRET, Luminex, Quanterix SMC, flow cytometry
- MS-based: Deep or single-shot proteome profiling; targeted MS using MRM, Metabolomics & LC-MS
- IHC/IF, ISH, histology, Ventana multi-colour staining
- RNAseq, Fluigdim platform for mRNA signature

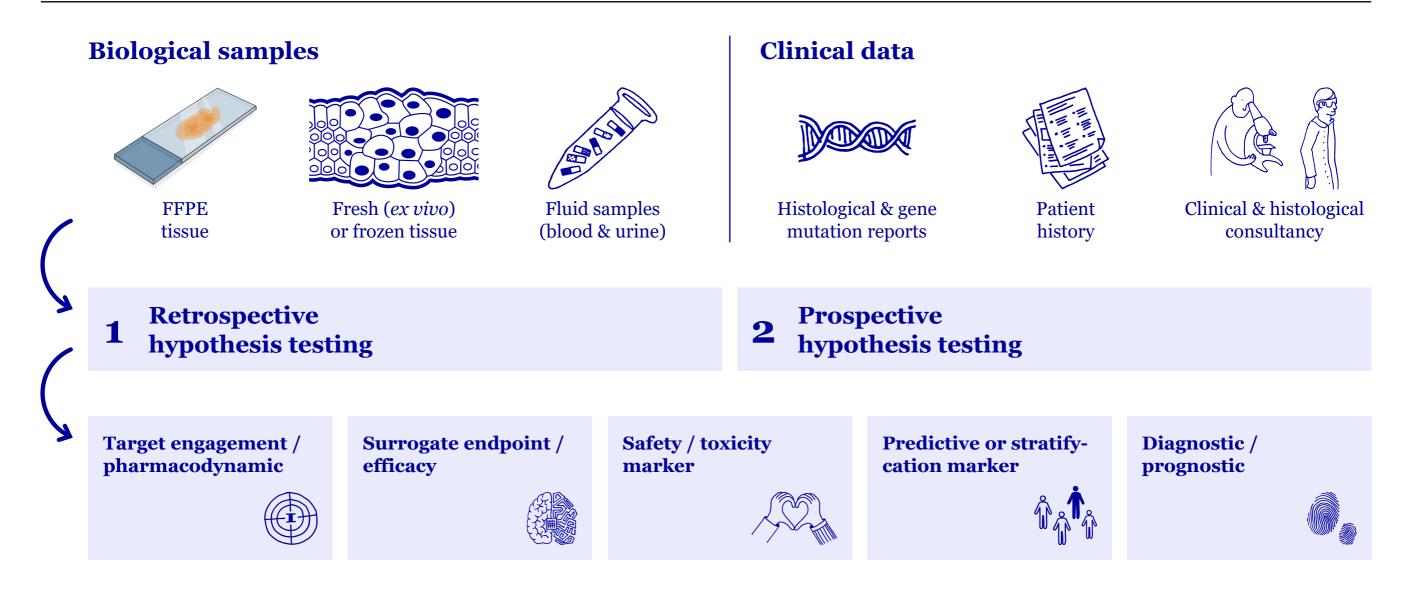

Clinical Case studies


Cytokines quantification (by MSD) in *plasma from patients included in* clinical trial

Phosphomarker in CD8⁺ T-cells in whole blood (by Flow cytometry). Target engagement assay used in a clinical trial.

Target (in blue)/Immune infiltration (CD8 in yellow) in a patient with renal cell carcinoma under clinical trial (by multiplex IHC histology²)

Ultra-sensitive mutant huntingtin protein quantitation in *clinical CSF samples* from patients by Singulex²


PAGE 38

1 TME = tumour microenvironment 2 Performed on Roche Ventana BenchMark Ultra platform

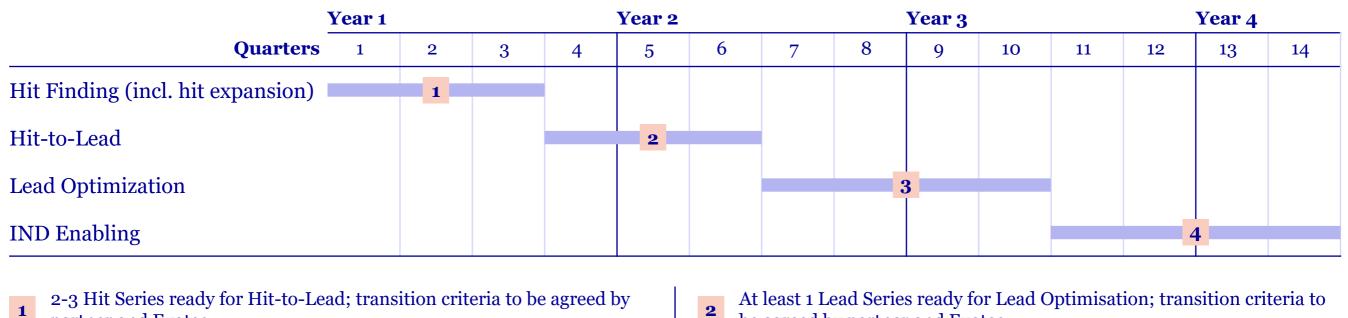
3 Singulex or SMCxPro (Single Molecule Counting); Wild et al. "Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington's disease patients", Journal of Clinical Investigation, April 2015 GCP: Good clinical practice, CSF: Cerebrospinal fluid, IHC: immunohistochemistry, IF: immunofluorescence, ISH: *in situ* hybridization

Translational Biomarkers strategy using pertinent samples

The need for translational thinking

#RESEARCHNEVERSTOPS

QUESTIONS AND ANSWERS



Business Development 114 Innovation Drive, Milton Park, Abingdon Oxfordshire OX14 4RZ, UK

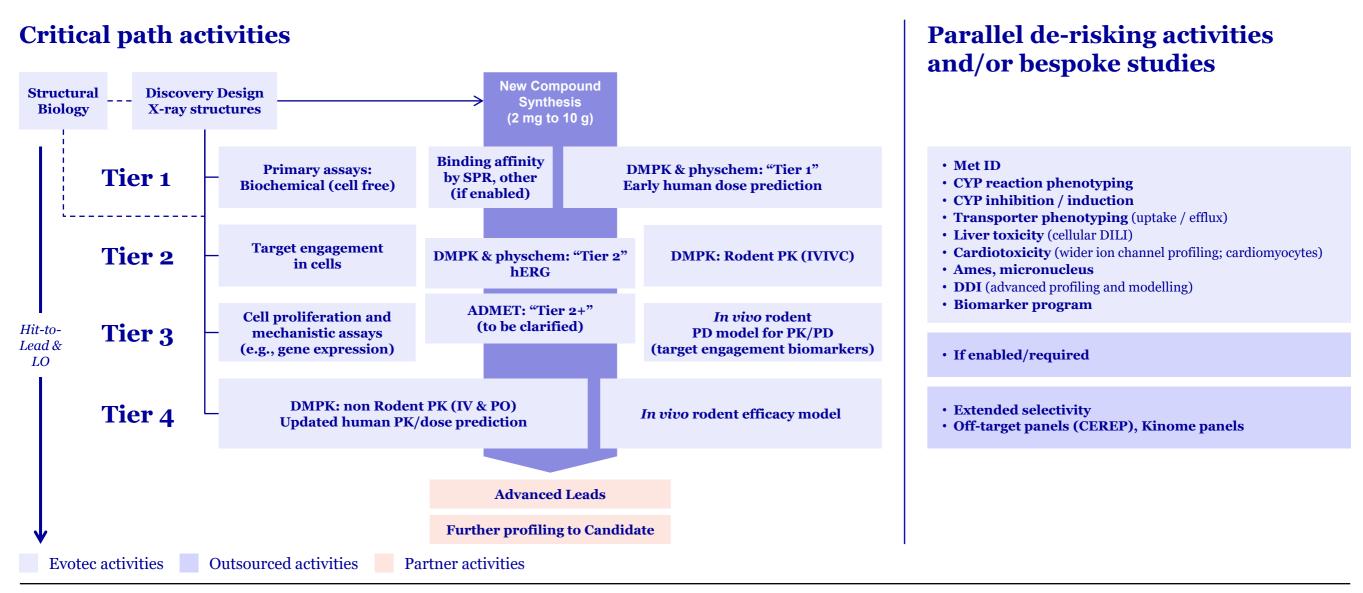
T: +44.(0)1235.86 15 61 *F*: +44.(0)1235.86 31 39 *info@evotec.com*

Accelerated plan for small molecules

Estimated timelines from hit ID to IND-enabling studies

partner and Evotec

- Pre-clinical development candidate (PDC) selection; nomination 3 criteria to be agreed by partner and Evotec
- At least 1 Lead Series ready for Lead Optimisation; transition criteria to be agreed by partner and Evotec 2


IND filing 4

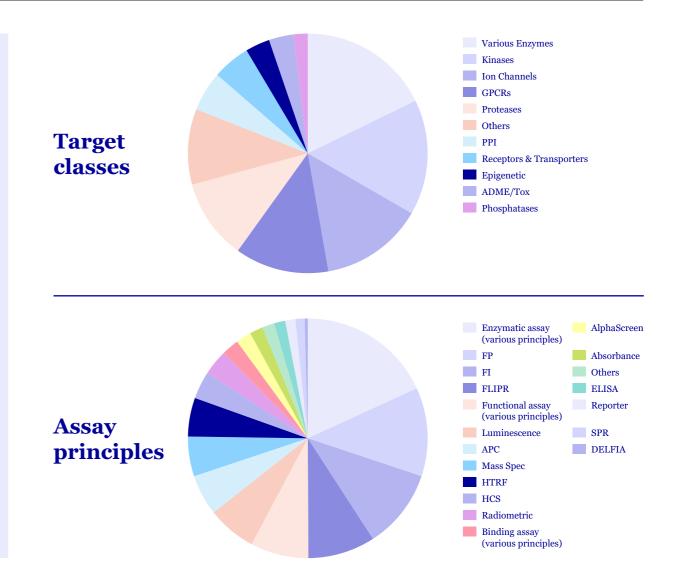
- Evotec's E2E R&D engine to rapidly progress a structurally-enabled program to deliver a high-quality PDC in 2.5 years
- Project plan assumes target structural information is available early in the project to drive Hit Expansion and Hit-to-Lead phases
- Proposed (accelerated) Lead Optimisation timelines are based on suitably de-risked leads entering this phase

Evotec's Hit-to-Lead & Lead Optimisation Screening Cascade

Typical cascade from hits to advanced leads

Achieving assay excellence with rapid turnaround

Case study for DMTA¹ *in vitro* biology cycle for a two-target project


Assay format	Number of assays	Average development time (weeks)	Cmpds per week	Assay Format	Data delivery turnaround	Z' Average
Biochemical	4	4	up to 28	384	1 week N=2	0.6-0.85
Target engagement	3	5-8 ²	up to 28	384	2 weeks N=2	0.5-0.75
Phenotypic (proliferation/survival)	6	5	up to 28	384	2 weeks N=2	0.5-0.75

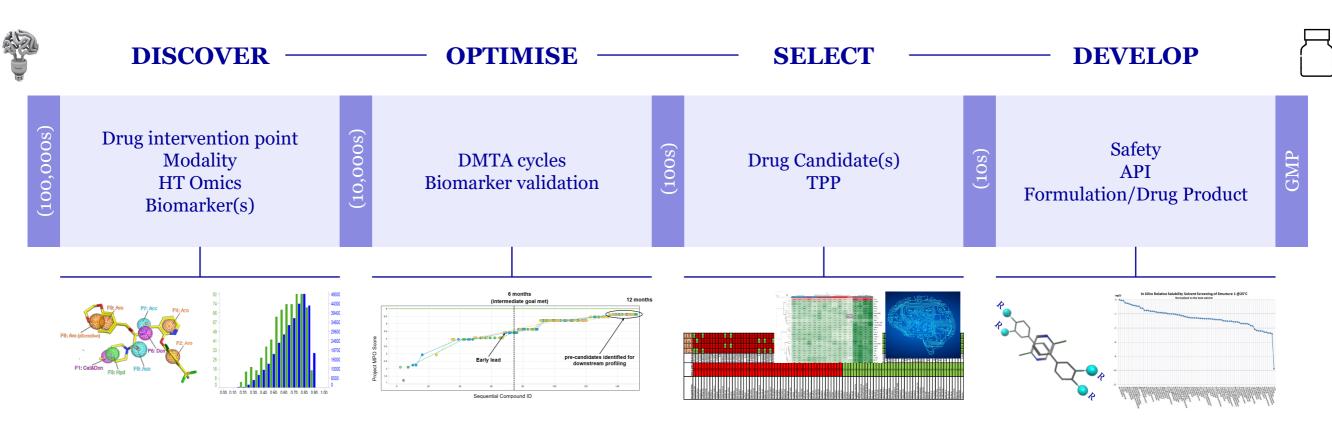
- Partner requested set up of >10 assays to support the profiling of two targets
- Rapid delivery of data to support future design was a key criteria
- Partner opted to expand collaboration based on experience in first 12 months

Evotec's Track record in assay development and screening

Expertise and know-how developed through 15+ years of collaborative research

- Vast amount of expertise in assay development, validation and automation
 - More than 1,000 assays developed
 - 60% biochemical, 40% cell based assays
 - More than 700 HTS projects completed
- Approximately 50% of our hit identification projects continue with hit expansion, hit-to-lead and lead optimisation projects at Evotec
- Track record in addressing challenging targets
 - PAM/NAM for GPCRs and Ion Channels
 - Allosteric modulators of enzymes, PPIs
 - Complex assay systems (stem cells, mitochondria, co-cultures, microorganisms, primary cells, blood cells, isolated proteins)
- Deep integration of alternative hit identification routes
 - Multiple assay modalities per target
 - High Throughput early liability assessment (eADMET panel)
 - Virtual screening

Generation of fully human antibodies


From traditional platforms to A.I.-driven approaches

Hybridoma platformExploration of natural immune repertoire using phage displayB cell cloningJ.HAL®, A.I designed phage and yeast librariesDe novo mAb design (prototype stage)Key distinguishing featuresKey distinguishing featuresNey distinguishing featuresNey distinguishing featuresKey distinguishing featuresKey distinguishing featuresKey distinguishing featuresNey distinguishing featuresNey distinguishing features• Hybridoma gener- ation merged with automated clone picking• Construction of naïve and immune libraries• Direct screening of hundreds of thousands of B cells upon immunization or natural immune repertoireNo species restrictionKey distinguishing features• State-of-the-art platform to design optimal binders in silico• Screening of thousands of mono- clonal candidates simultaneously• In vitro selection of rare antibodies• No species restriction• Allow to generate multi-specific formats• Fastest way to generate binders • Rational design of binding mode	In vivo		In vitro	In silico	
	 platform <i>Key distinguishing features</i> Hybridoma generation merged with automated clone picking Screening of thousands of monoclonal candidates 	 natural immune repertoire using phage display <i>Key distinguishing</i> <i>features</i> Construction of naïve and immune libraries Species-independent <i>In vitro</i> selection of 	 Key distinguishing features Direct screening of hundreds of thousands of B cells upon immunization or natural immune repertoire 	 designed phage and yeast libraries <i>Key distinguishing features</i> Synthetic and developable A.Idesigned Fab and VHH human libraries Allow to generate multi-specific 	 design (prototype stage) Key distinguishing features State-of-the-art platform to design optimal binders <i>in silico</i> Fastest way to generate binders Rational design of

Unmatched Integration in the Industry

Computational methods and deep expertise impact every stage **from Idea to IND to Clinic**

Data Surface linking Independent Data Chambers

Unique in the industry: high quality data at every stage in the value chain to de-risk projects, design modalities, create biomarkers, drive projects, ... (e.g. tox prediction)

1. A complete offering to solve even the hardest discovery campaign

Generation of fully human antibodies: from traditional platforms to A.I.-driven approaches

Exploration of natural immune repertoire using phage display

Key distinguishing features

- Immune library generation upon immunization or natural infection
- *In vitro* selection of rare yeasts

Cost

• No species restriction

Risk

J.HAL[®], A.I.designed phage and yeast libraries

Key distinguishing features

- Highly diverse A.I. designed human library
- Time + cost savings for therapeutic development

B cell technology

Key distinguishing features

- Direct screening of millions of B cells upon immunization or natural infection
- No species restriction

In silico mAB design (coming soon)

Key distinguishing features

- State-of-the-art platform to identify optimal binders *in silico*
- Fastest way to generate binders
- Initial client projects started

Just – Evotec Biologics (J.DiscoveryTM)

Evotec Hamburg/Toulouse

Agility