

#RESEARCHNEVERSTOPS

Immuno-Oncology Therapeutic Area

The Cancer Immunotherapy revolution has just begun

Centres of excellence to discover, develop & manufacture

Together for medicines that matter with ~5,000 people at 17 sites

Seattle (US) Dedicated to biologics

J.POD[®] *Redmond (US)* Biologics development & cGMP commercial manufacturing **Branford site (US)** Dedicated Sample Management Facility

Princeton (US) Gertrude B. Elion Campus, dedicated to cell & protein production

Framingham (US) US site of the ADME-Tox capabilities Alderley Park (UK) Focused on antimicrobial and infectious disease; Cyprotex – global leader in DMPK/ADME-tox

Abingdon (UK)

Dorothee Hodgins Campus, integrated drug discovery & development *Lyon (FR)* Anti-infective drug

discovery; BSL 3 laboratory

set up

Toulouse (FR)

Campus Curie – Oncology

of excellence; integrated

& immuno-oncology centre

drug discovery; 2nd J.POD[®]

Verona (IT) Campus Levi-Montalcini Integrated drug discovery & development

Cell therapy manufacturing

Dedicated to gene therapy

Vienna (AU)

Modena (IT)

Hamburg (GER – HQ)

Manfred Eigen Campus – A major hub for integrated drug discovery including variety of HTS screening activities; home of neuroscience experts & the basis for leading end-to-end iPSC platform

Göttingen (GER) Manfred Eigen Campus – home of multi-omics data analysis PanHunter, E.MPD & iPSC-derived cells

Cologne (GER) Induced pluripotent stem cell (iPSC) technology

Halle (GER)

Centre of excellence for rare disease drug substance manufacturing

Munich (GER)

Dedicated to unrivalled proteomics and bioinformatics; unique mass spectrometrybased "omics" platform

PAGE 2

Evotec Toulouse is embedded in a cancer biomedical campus

Combining medical and research excellence via proximity

IUCT-Oncopole is a highly recognised University hospital (~500M€ public funding)

- Combining medical and research excellence (IUCT, CRCT) in Oncology
- Incubator for midsize pharmaceutical and biotech companies
- Example of working together:
 - Kazia (EVT801) supported by Evotec, ongoing phase I trial at Oncopole
 - Exploratory biomarker assessments are performed by Evotec

Introduction to Immuno-Oncology (IO) therapeutic area at Evotec

Campus Curie in Toulouse, France: the core location for Cancer Immunotherapy

- Over 50 highly skilled and experienced Immunologists working in the IO space (*in vitro*, *ex vivo* & *in vivo*)
- Since 2015, Evotec has successfully developed partnerships within the IO field as illustrated by many press releases¹
- Since 2021, two IO drugs have been moved to human clinical trials in collaboration with: Exscientia (A_{2A}R antagonist) and Kazia Therapeutics (EVT801)
- **Collaboration with Translational Biomarkers** to develop relevant translational evaluation of cancer immunotherapeutics on patient samples
- Bringing Immunology expertise to projects in the **I&I Therapeutic Area**
- Supporting our Innovate Oncology R&D portfolio highly focused on IO:
 - Biologics: Immune Cell Engagers
 - Next generation Cell Therapies in Oncology with various iPSCsderived immune cell types (e.g. iNK cells): presented at AACR23, AACR24 and SITC23

1

Building on two key pillars for Immuno-Oncology drug discovery

Immunology understanding & versatility in therapeutic modalities

In-depth Immunology knowledge on:

- Broad range of immune cell types
- Various targets
 - On both the liquid and solid tumour space

Broad experience from Small Molecules to Cell Therapy:

- Small molecules
- **2 Biologics:** antibodies, bispecific, cancer vaccines, peptides
 - Oligonucleotides: ASO, RNA
 - Cell Therapy

IO is a multi-modality therapeutic area: the combination thinking

Checkpoints inhibition is only the tip of the Cancer Immunotherapy iceberg

- Checkpoint inhibitors are blockbusters and have transformed cancer care since a decade (first one approved in 2011¹):
 - Now used as 1st line treatment in many indications (>65 FDA approvals in 20 different indications²)
 - Low response rate (around 20%²) but strong and long-term clinical efficacy and reduced side effects as compared to conventional chemo (outside of inflammatory / auto-immunity AE)
- **Many challenges** are associated such as low response rate, toxicity, additional immune escape mechanisms (opportunity for combination therapy)

Evotec Immuno-Oncology team perspective: *"the main challenge for the next decade will be to unravel why some patients respond and the others don't" –* by:

- **Evaluating combination** with new ICTs in development and other immunotherapies (e.g. vaccines, cell therapy, bispecific Ab, etc.) / chemotherapies / radiotherapy
- Integrating knowledge about biomarkers into patient selection in trials

How Evotec IO Scientists are supporting Drug Discovery programs

Of mice and men: a drug discovery continuum including cancer patient' samples

A broad expertise from the bench to the bedside

Building together tailored approaches for successful drug discovery programs

Functional in vitro Immunological assays

- $\bullet \ \ Supporting \ small \ molecules, \ biologics \ and \ cell \ therapy \ programs$
- T-cells ($\alpha\beta$ & $\gamma\delta$), Treg, NK cells, B-cells, Neutrophils, M1/M2, Dendritic Cells, MDSCs
- Proliferation, cytokines production, killing, tracking of surface markers, suppression assay

Visualising Immune cells "in action" at the contact of tumour cells

- Evaluation of IO products at the single-cell level monitoring Immunological Synapse
- Quantification of the data using Metamorph software
- High-speed imaging of the Immunological Synapse (ImageStream X)
- 384w plate assays with High-throughput confocal imager: Operetta

Preclinical in vivo rodent models in Immuno-Oncology

- Syngeneic tumour models and human xenograft models with humanized mice
- Therapeutic efficacy, PK/PD, analyse of the TME, exvivo functional assays, etc.

Filling the gap in drug discovery by accessing cancer patient samples

- Complex flow-cytometry based analyses on fresh human tumour resections, gene signature
- Functional assays on the blood for target engagement validation, etc.
- Additional technologies for biomarkers identification: scRNAseq, TCR sequencing, proteomics, metabolomics, etc.

Flow Cytometry platform in Campus Curie: core expertise for Immunology

A dynamic flow cytometry facility with a dedicate expert team & powerful instruments

- Flow.Jo software
- Diva software
- ImageStreamX —
- · Development of AI tools in panel design
- Data analysis automation

STREET, ST

- **1. Priming anti-tumour immune response:** cancer vaccines, manipulating innate immunity
- 2. Unleashing tumour-specific T-cell immunity: checkpoints inhibition & T-cell targets
- 3. **Re-directing immune cells killing towards tumour cells:** bispecific Ab, ADCC, ADCP, cell therapy

4. Paving the way to the clinic:

translational Immunological assays with cancer patient samples

- 1. **Priming anti-tumour immune response:** cancer vaccines, manipulating innate immunity
- 2. Unleashing tumour-specific T-cell immunity: checkpoints inhibition & T-cell targets
- **3. Re-directing immune cells killing towards tumour cells:** bispecific Ab, ADCC, ADCP, cell therapy
- 4. **Paving the way to the clinic:** translational Immunological assays with cancer patient samples

Tumours with immune-desert phenotype are not responding to ICIs

Case study: validation of target X as modulator of tumour neo-

Boosting tumour immunogenicity and overcoming tolerance mechanisms

Targeting 3 pillars:

- No priming
- Tolerance
- Immunologic ignorance

20 pSTY peptides exclusively found in KO cells vs 3 pSTY peptides in WT cells

Note: adapted from Mendes AD et al. Frontiers 2022

Therapeutic cancer vaccines: the beginning of a new era

Educating and priming T-cells to eradicate malignant cells in cold & immune desert tumours

- So far, the concept of therapeutic vaccines has been pursued for decades with little success in the clinic
- Only few cancer vaccines were approved by the FDA (e.g. Provenge, cell-based vaccine for advanced prostate cancer, oncolytic virus vaccine for metastatic melanoma)
- Major hurdles to overcome are low immunogenicity and immunosuppression within the TME

Arising of RNA-based vaccine platforms or new personalized approaches with selected peptides epitope result in significant progress in the clinic and are leading to optimism

- **Major Phase II results** for mRNA-4157 are leading to a pivotal Phase III trial in resected melanoma with high risk of recurrence in combination with PD-1 inhibitor Keytruda¹
- **Positive Phase III results** for Tedopi[®] T-cell epitope-based cancer vaccine in HLA-A2⁺ lung cancer patients who developed previous resistance to immunotherapies (increased OS)²
- Individualized Neoantigen-Specific Immunotherapy (iNeST) platform developed by Genentech in collaboration with Biontech based on patient's particular tumour mutations (neoantigens):
 positive Phase I results in patients with resected pancreatic cancer; sequential combination with atezoluzimab³

Therapeutic cancer vaccines: the beginning of a new era

Expertise & experience in supporting the discovery of therapeutic vaccines

- Assessing *in vitro* immunogenicity assays using primary human immune cells (e.g. recall assay, etc.)
 - Validation of peptides Immunogenicity
 - Possibility to use blood samples from healthy donors or from patients with the selected indications
- Assessing *in vivo* immunogenicity with preclinical mouse models including the possibility to use humanized mice
 - Definition of the immunization scheme, route of administration
 - Definition of the best adjuvant for peptides or protein-based vaccines (licensing of DCs and APC)
- **Therapeutic efficacy** using preclinical mouse models and the selected route and scheme of vaccine administration
- **Translation to the clinic** with exploratory immunomonitoring approaches (e.g. ELISpot, flow cytometry, etc.)

In vitro (A) and *in vivo* (B) immunization approaches are instrumental for characterizing vaccine candidates immunogenicity

NK cells: a unique innate immune cell for cancer immunosurveillance

Diversity of NK-based cell therapies for cancer and beyond

Expanding the scope of therapeutics arsenal to harness NK cells in cancer: from biologics to cell therapy

Deciphering NK cells biology to better tailor drug discovery programs

Strong experience in supporting NK-based therapeutic discovery projects from Ab to cell therapy

NK cells: a unique innate immune cell for cancer immunosurveillance

Measuring NK cells cytotoxicity at the Immunological Synapse level with high throughput imaging

Evaluation of lytic granules (Perforin⁺) polarization based on their mean distance to the IS using the Operetta (high-content confocal imaging system)

Interacting NK identification Distance NK-target = 0 NK in interaction vs NK alone

Measuring tumour cell resistance to NKmediated killing analyzing on perforin polarization to IS

Distance (μm) between IS and lytic granules (mean/NK cell)

Target cell killing efficiency:% of apoptotic cells after 4h of co-culture**K562: 50%; THP-1: 10%**

Possibility to rank lead ICEs or lead Ab candidates at the single NK cell level

Plasticity of macrophages in cancer: innate immune cells to target

Exploring the potency of therapeutic mAbs in triggering tumour cells phagocytosis

Overview of myeloid checkpoints and inhibitory receptors expressed by tumour-associated macrophages (TAMs)

Incucyte-based ADCP Assay Principle

- Polarized macrophages cocultured with tumour target cells +/- anti CD20 mAb
- Kinetic traces plots represent the number of phagocytic macrophage per condition; format is 384 well plate

A large of functional assays have been set up to better understand MoA underlying macrophages targeted therapies

- 1. **Priming anti-tumour immune response:** cancer vaccines, manipulating innate immunity
- 2. Unleashing tumour-specific T-cell immunity: checkpoints inhibition & T-cell targets
- **3. Re-directing immune cells killing towards tumour cells:** bispecific Ab, ADCC, ADCP, cell therapy
- 4. Paving the way to the clinic:

translational Immunological assays with cancer patient samples

Tumours with immune-excluded phenotype are not responding to ICIs

Development of drugs breaking the barriers and/or optimizing T-cell migration

Targeting 3 pillars:

- Angiogenesis
- Extracellular matrix
- Chemokines

Human primary CD8⁺ T-cell chemotaxis assay with real time imaging

Cells migrate in response to chemoattractant +/- drug, the number of CD8⁺ T-cells decreases overtime in the upper chamber (kinetic up to 40 hours)

CD8+ T-cells migrate towards CXCL12-containing medium in a time and dose-dependent manner

Targeting tumour Angiogenesis with the VEGFR-3 Inhibitor EVT801

An opportunity to address immune exclusion in solid tumours and combine with ICIs

Background on EVT801

- VEGFR-3 plays a crucial role in cancer-induced angiogenesis and lymphangiogenesis
- **EVT801** is highly selective with a better safety profile than other VEGFRs inhibitor
- **EVT801:** an optimal drug partner for ICIs in VEGFR₃⁺ tumours or TMEs:
 - Induces normalization of tumour blood vessels and reduce hypoxia
 - Reduce immunosuppressive chemokines (CCL4 and CLL5) as well as MDSCs
 - Favor the induction of tumour-specific T-cell responses

EVT801: a Phase I stage compound partnered with Kazia Therapeutics

- Clinical trial initiated at the IUCT-Oncopole in Q4 2021
- Biomarkers strategy including immunomonitoring is overseen by Evotec in partnership with Kazia Tx and the hospitals (Toulouse and Lyon, France)

Preclinical learnings regarding EVT801 MoA and its synergy with immunotherapy

CT26 colon carcinoma

-O- Vehicle

E 2,000

E 1,500

1,000

EV/T801

4T1 mammary carcinoma

4T1-tumour bearing mice treated with EVT801 alone or EVT801 + aCTLA-4 mAb

Preclinical data published in Cancer Research Communications in 2022 (Paillasse MR et al.)

Dual inhibition of checkpoint targets to improve clinical efficacy

Using preclinical mouse models for testing combination hypotheses in drug discovery programs

Combination of Ipilimumab and Nivolumab approved by FDA for: Metastatic melanoma, metastatic renal cell carcinoma, colorectal cancer with MSI-H and MMR aberrations

- Negative signal

+ Positive signal

Combining anti-CTLA4 & anti-PD-1 antibodies in a MC38 colon tumour model

Co-administration of aCTLA-4 and anti-PD-1 mAbs increase therapeutic efficacy

Ex vivo analysis of immune cells infiltrate within the TME using multi-parametric flow cytometry

Deciphering T-cell activation features at the single cell level

High-speed imaging of the Immunological Synapse by Multispectral imaging flow cytometry

- Assess a high-speed method for quantitative and qualitative analysis of the Immunological Synapse (IS) between effector cells (NK, CTL) and tumour cells
- Use of the Image Stream X technology
- More data points per condition and robust statistical analysis of the IS for testing small molecule compounds, ICEs or cell therapies (e.g. CAR-T cells constructs)
- Demonstration of the sensitivity of the system and its robustness using a comprehensive dose response of aCD3 mAb to induce different level of IS productivity and stability

A cutting-edge approach to evaluate T-cell modulating therapies and better understand their MoA

Enhancing T-cell activation by blocking immunosuppressive cells

Targeting regulatory T-cells (Treg) & Myeloid-Derived Suppressor Cells (MDSCs)

Assessing Treg immunosuppression with either nTregs or *in vitro* induced Tregs

CD34⁺ HSC-differentiated MDSC allow evaluation of drugs modulating their biology in a 100% human *in vitro* model

Using immunotherapy for modulating immunosuppressive cells within solid tumours participate to reinforce anti-tumour immunity in immune-inflamed phenotypes

- 1. **Priming anti-tumour immune response:** cancer vaccines, manipulating innate immunity
- 2. Unleashing tumour-specific T-cell immunity: checkpoints inhibition & T-cell targets
- 3. **Re-directing immune cells killing towards tumour cells:** bispecific Ab, ADCC, ADCP, cell therapy
- 4. **Paving the way to the clinic:** translational Immunological assays with cancer patient samples

Evaluating bispecific antibodies – T-cell engagers

Enabling CD8-mediated killing of tumour cells using bispecific Abs / ICEs

- Bispecific antibodies are redirecting CD8⁺ T-cells towards tumour cells expressing the target antigen and inducing activation of the CTL which results in tumour cell killing
- Several type of assays can be used to evaluate the potency of bispecific antibodies:
 - CD8-mediated killing of tumour cells
 - Killing assay, GranToxiLux® assay
 - Upregulation of CD107a on CD8⁺ T-cells
 - T-cell activation features
 - Cytokines production
 - Activation markers
 - Percentages of T-cells: tumour cells conjugates
 - icCa2⁺ fluxes in T-cells
 - Visualizing bispecific Abs effect at the Immunological Synapse level
 - Quantification of the data & signaling pathways

T-cell activation with ICEs

Merge/DRAQ5/phase

Note: IS (Immunol ogical Synapse), CTL (Cy totoxic T Lymphocytes), ICEs (Immune Cell Engagers) Source: scheme from Baeuerle PA and Reinhardt Cancer Research 2009

Evaluation of Immune Cell Engagers with T-cells and NK cells

Combining functional flow cytometry-based assays & Immunological Synapse for optimal triagging

P-Tyr

T cells

Exploring the efficiency of ICEs to trigger T-cell based cell killing

Development of a streamlined platform to evaluate ICEs in a high throughput fashion (384w)

- Bispecific antibodies are redirecting CD3⁺ T-cells towards tumour cells expressing the target antigen and inducing activation of the CTL which results in tumour cell killing
- A platform is up and running to explore the impact of Abs in triggering the tumour cells killing:
 - CD3⁺-mediated killing of tumour cells:
 - Incucyte detection of fluorescent tumour cells kinetic traces
 - Complementary analysis of caspase 3/7 substrate cleavage upon treatment
 - T-cell activation features:
 - Cytokines release assessed by Luminex or MSD
 - High throughput multiplex assay (up to 10 cytokines per run, 384 well plate)
 - Flow cytometry based immuno-phenotyping of effector cells to correlate the response to the CD3 activation state

Evaluation of IO therapeutics in a 3D-model of solid tumour

ADCC activity against HER2⁺ cancer cells in 3D using referent clinical grade mAb

Aim

• Evaluation of IO therapeutic strategies validated in 2D cell culture models in a more elaborate 3D model that better mimic the growth and the heterogeneity of solid tumour micro-environment¹

Experimental setup

- TAA⁺ red fluorescent solid tumour cells
- Blood-derived NK cells (frozen cells)
- Fluorescence overtime by Incucyte

Outcome

- Validation of ADCC of blood-derived NK cells against HER2⁺ tumour cells in a 3D-organization using the clinicalgrade Trastuzumab as referent mAb
- 3D-ADCC model validated using HER2⁺ breast cancer line²

Trastuzumab-mediated ADCC overtime against HER2⁺ breast cancer cells in 3D

- **1. Priming anti-tumour immune response:** cancer vaccines, manipulating innate immunity
- 2. Unleashing tumour-specific T-cell immunity: checkpoints inhibition & T-cell targets
- 3. **Re-directing immune cells killing towards tumour cells:** bispecific Ab, ADCC, ADCP, cell therapy

4. Paving the way to the clinic:

translational Immunological assays with cancer patient samples

Identification of the Right Patient using pertinent samples

Supporting patient stratification and identification of new biomarkers

RNA signature

Single cell mRNA sequencing

Proteomics

- Well established protocols for analysis of cancer phenotypes in patients samples and the possibility to study the tumour secretome
- Possibility to study the tumour secretome (by ELISA, HTRF, proteomics)

Flow cytometry analysis of patient freshly resected lung tumour

Multi-parametric analysis of immune cells infiltrating the tumour

Translational validation of NK-based allogeneic cell therapy

Performing ADCC experiments with primary blasts obtained from CLL patients

B leukemic tumor cells are defined as CD19⁺ CD5⁺ cells (60% - 80%) of total PBMCs in patients

Overcoming limitations of tumour cell lines using patient' samples for cell therapy projects and IO discovery

From whole blood assays to Clinical Trial Support

Ensuring Pharmacodynamic biomarkers in the clinic

Background

Develop a target engagement assay to demonstrate that EXS21546 is mechanistically active at the right dose

Whole Blood Assay Set-up

pCREB staining on CD8⁺T-cells for one healthy donor

Clinical Trial (HV)

Data points include 90 mg, 250 mg and 400 mg cohorts

Outcome

- Pharmacodynamic biomarker was confirmed in Healthy Volunteers subject
- Exscientia initiated a Phase 1/2 study with high adenosine signature cancers in 2022 (NCT05920408)

TICIMEL (NTC03293784): Monitoring Treatment Effects

Sector S600

Efficacy biomarkers: cytokines quantification

Background

Cytokines are easily quantified and characterised and concentration can be modified by drug treatment

Main experimental settings

in pre-clinical assays drug, leads to reduction of circulating cytokines

Outcome

Panels of inflammatory cytokines has been evaluated in patients as an efficacy endpoint biomarkers

V-PLEX Proinflammatory Panel 1 Human Kit

IFN-γ	IL-2
IL-10	IL-4
IL-12p70	IL-6
IL-13	IL-8
IL-1β	TNF-α

Chemokines evaluation in patients

Business Development 114 Innovation Drive, Milton Park, Abingdon Oxfordshire OX14 4RZ, UK

T: +44.(0)1235.86 15 61 *F*: +44.(0)1235.86 31 39 *info@evotec.com* Michael Esquerré, PhD VP, Immuno-Oncology Therapeutic Area Lead for Immuno-Oncology

michael.esquerre@evotec.com