

In vitro ADME & PK

pK_a and log P

Background Information

⁶PK_a affects solubility, permeability, log D and oral absorption by modulating the distribution of neutral and charged species.²

¹Di L and Kerns EH. (2003) *Current Opinion in Chemical Biology* **7**; 402-408.

- The pK_a is the pH at which the molecule is 50% protonated.
- Log P (or partition co-efficient) is a measure of the lipophilicity of a compound.
- Cyprotex's pK_a and log P determination uses UV-metric and pH-metric technology developed by Sirius, which is considered to be a 'gold standard' method for determining these properties.
- In UV-metric methods, the pK_a is measured by analysing changes in multi-wavelength UV spectra during acid-based titration of the sample. UV-metric pK_a methods work for compounds with pH-sensitive chromophores.
- In pH-metric methods, pK_a is measured by titrating a solution of the sample in water or solvent with acid and base, and calculating the pK_a from the shape of the titration. pH-metric methods work for any ionisable compound, but require more sample than UV-metric methods.
- The pH-metric method is also used to measure log P in a two-phase acid-base titration in the presence of octanol.

Protocol

Method

Fast UV titration for pK_a UV-metric titration for pK_a Potentiometric (pH-metric) titration for pK_a and log P

Instrument SiriusT3

Test Article Requirements

3-5 μL of 10 mM stock solution (UV-metric) 1 mg solid compound (pH-metric)

Partition Solvent used for Log P Determination n-Octanol (others available on request)

Data Delivery

pK_a log P (optional) Standard error RMSD Calculated log D at pH_{7.4} (based on pK_a and log P)

log P is determined from the shape of titration curves obtained in dual-phase titrations.

pK_{and} log P

pK_a measurements are determined using the SiriusT3 instrument from Sirius-Analytical using either a UV-metric or pH-metric approach.

Figure 1

UV-metric method for measuring pK_a values.

UV-metric methods provide pK_a results for samples with chromophores whose UV absorbance changes as a function of pH.

On SiriusT3, the Fast UV method measures absorbance at 250 wavelengths and 54 pH values in a buffered solution in about 5 minutes. The slower UV-metric method in unbuffered solution extends the pH range below 1 or above 13. The 3D graph shows data from the measurement of labetalol pK_as. The other graphs are 2D projections showing change in absorbance vs. pH and vs. wavelength, with percent species and molar absorbance coefficients overlain.

Figure 2

pH-metric method for measuring pK_a values.

pH-metric methods are based on potentiometric acid-base titration. Results are obtained by a complex computational process. The pH of each point in the titration curve is calculated using equations that contain $pK_{a'}$ and the calculated points are fitted to the measured curve by manipulating the pK_a value. The pK_a that provides the best fit is taken to be the measured pK_a . pH-metric methods will measure all pK_a between 2 and 12, provided the sample is in solution throughout the experiment.

Figure 3

pH-metric method for measuring log P values

In the pH-metric method for log P, a weighed sample is dissolved in a two-phase water-octanol system, and titrated over a pH range (typically 2 to 12 for bases and ampholytes, 12 to 2 for acids). Although the solution becomes opaque during stirring, the pH electrode continues to measure pH of the aqueous component of the solution. Results are obtained by a complex computational process. The pH of each point in the titration curve is calculated using equations that contain pK_a and P, and the calculated points are fitted to the measured curve by manipulating the P value. The P that provides the best fit is taken to be the measured P value, which is reported as the logarithm, i.e. log P. As well as log P, the log D value as a function of pH is determined from the data.

References

¹ Di L and Kerns EH. (2003) Current Opinion in Chemical Biology 7; 402-408.