Application of Ultra-Fast LC-MS/MS to bioanalytical assays in a drug discovery environment

Basile Khara, Michael Wong, Simon Wood

Cyprotex Discovery Ltd, Alderley Park, Macclesfield, SK10 4TG

Introduction

Within the past 20 years, small molecules bioanalysis using liquid chromatography/tandem mass spectrometry (LC-MS/MS) on a triple quadrupole-MS has become a common practice in support of drug metabolism and pharmacokinetics (DMPK) studies. The LC-MS/MS assay provides the specificity, flexibility and sensitivity that allows a quick and reliable drug quantification from a wide variety of biological matrices. However, there has always been an increasing demand in analytical capacity and faster sample turnaround time in order to identify potential lead compounds. For this reason, it has become necessary for our bioanalytical laboratories to develop a new analytical method to cope with this major challenge during the drug discovery stage.

Recently, we have expanded our LC-MS/MS capabilities using Ultra-Fast Separation Chromatography (RapidSep) for bioanalytical analysis to improve overall efficiency of DMPK studies. With the new RapidSep set up, it has become possible to reduce the chromatographic run time from 108 s to 30 s per injection. To demonstrate the potential of the RapidSep over the traditional methods, we have applied the RapidSep set up to a real study sample; monitoring the PK profile following IV, PO administration to male (C57BI/6J) mouse at 1,10 mg/kg. In this assessment, we have evaluated all essential PK parameters such as clearance, volume of distribution, AUC, half-life $(T_{1/2})$, C_{max} , T_{max} , bioavailability, blood: plasma ratio, and dose formulations for the potential of its applicability.

Precision and Accuracy of spiked QCs

The spiked quality control sample precision, and accuracy were demonstrated at N=3 at the low (4ng/mL), and at medium 1 (40ng/mL), medium 2 (400ng/mL) and high (4000ng/mL) concentrations. The assay showed a linear calibration range / covered range from of

Method

RapidSep method vs Generic method

- Column: Halo 2.7 μm vs Kinetex XB-C18 2.6 μm
- Dimension: 10 x 2.1 mm / 50 x 2.1 mm
- Mobile phase A: 10 mM ammonium formate, 0.1% formic acid (aq)
- Mobile phase B: Methanol
- Temperature: N/A / 50°C, Flow rate: 1.5 mL/min / 0.8 mL/min
- Detection: MRM

Figure 1: The column-source connection

11.0

1.2

14.0

2.1

18.0

12.0

1.6

14.5

2.1

18.6

For the RapidSep system/method, the column was attached directly to the MS source as shown in Figure 1. to minimise column dead volume.

0.8

1.2

1.6 1.8

Column per	rformance										
 XIC of +MRM (5 pairs): 609.200/195.006 Da 2.7e5 	ID: Reserpine from Sample 33 (Cal1 100ng/mL_p	pre-spiked_plasma) of RapidSep_Halo_19_August_2020_BK.wiff (. Max. 1.5e5 cj	S.	Test compound						
2.6e5 - 2.4e5 -	2	3	Halo C18		Parameter Atenolol Nadolol Metoprolol Reserpine Rosuvastatin						
2.2e5											

Accuracy (70)	65.0	-	24.7	55.0	55.6	101	10/	55.7	55.5	03.4	57.5	100	
Value > ±20%			Value	Excluded fr	om calculation	of mean accu	гасу		NC: Not cale	culated			1 5000 is silved. The collibration
Concentration of lowest acceptable cali	bration stand	ard:		1	nmol/L	STD1	1						1-5000 ng/mL. The calibration
Concentration of highest acceptable cal	ibration stand	dard:		5000	nmol/L	STD12							and the second states of south a
N/A: No peak detected													curve was fitted with a
					Accuracy a	nd Precision							a_{1} and a_{2} is a subscription of b_{2} while the
													quadratic regression 1/x ² whilst
B					Analyte	Analyte	Analyte	Analyte	1				r_{1} r_{2} r_{2} r_{2} r_{2} r_{2} r_{1} r_{2} r_{2} r_{1} r_{2} r_{2
			Sample	#	QC	QC	QC	QC]				giving a r ² value ≥ 0.99 . This
RapidSep			Nominal con	c (ng/mL)	4.0	40	400	4000	4				
rapiaeop			Determine C	(1	3.85	37.4	399	4892	{				data shows that the RapidSep
method				3	4.85	41.2	369	4418	1				
method			Mean		4.41	39.7	382.0	4780]				method provides similar data
			Stdev		0.511	2.06	15.3	319	-				
			Precision (%))	11.6	5.19	4.01	6.67]				compared to the generic
					_								compared to the generic
<u>Figure 4.</u> Compariso	on of G	eneric	metho	d agaiı	nst the l	RapidS	ep met	thod. (.	A and 1	B) Intra	a-assay	V	method from plasma matrix.

<u>Figure 4.</u> Comparison of Generic method against the RapidSep method. (A and B) Intra-assay linearity, accuracy and precision assessment using Generic vs RapidSep method.

Blood matrix assessment

						Linea	rrange						
Std.	#	STD1	STD2	STD3	STD4	STD5	ST D6	STD7	STD8	STD9	STD10	STD11	STD12
Nominal conc. (r	ng/mL)	1.00	2.50	5.00	10.0	25.0	50.0	100.0	250.0	500.0	1000.0	2500.0	5000.0
Determined (1	0.997	2.40	2.68	11.5	26.6	53.7	104	254	482	901	2325	4534
Accuracy (%)		99.7	95.9	-	115	107	107	104	101	96.4	90.1	93.0	90.7
Value >±20%				Value	Excluded fro	om calculation	of mean accu	racy		NC: Not calc	ulated		
Concentration d	f lowest ad	ceptable cali	bration stand	dard:	1	nmol/L	STD1]					
Concentration of	f highest a	cceptable cal	ibration stan	dard:	5000	nmol/L	STD12]					
N/A: No peak de	tected					Accuracy a	nd Precision						
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Λ						Analyte	Analyte	Analyte	Analyte	ו			
A				Sample	#	QC	QC	QC	QC	1			
^				Nominal con	c (ng/mL)	4.0	40	400	4000	1			
Generic				Determine C	(1	4.39	40.6	399	4023	1			
•••••					2	3.34	40.5	418	4070]			
mathod					3	4.23	41.2	321	3715]			
meth	UU			Mean		3.99	40.8	379.0	3940				
				Stdev		0.563	0.419	51.4	193]			
				Accuracy		99.8	102.0	94.8	98.5				
				Precision (%)	14.1	1.03	13.56	4.90				
						Linco	r rango						
						Lilled	<u>r range</u>						
Std.	#	STD1	STD2	STD3	STD4	STD5	STD6	STD7	STD8	STD9	STD10	STD11	STD12
Nominal conc. (r	ng/mL)	1.00	2.50	5.00	10.0	25.0	50.0	100.0	250.0	500.0	1000.0	2500.0	4000.0
Determined (1	0.922	2.92	1.77	10.7	26.9	56.1	94.1	229	446	853	2265	4595
Accuracy (%)		92.2	117	-	107	108	112	94.1	91.7	89.3	85.3	90.6	115
Value > ±20%				Value	Excluded fro	om calculation	of mean accu	racy		NC: Not calc	ulated		
Concentration o	f lowest ad	ceptable cali	bration stand	dard:	1	nmol/L	STD1]					
Concentration of highest accentable calibration stand				dard:	4000	nmol/L	STD12	-					
N/A: No peak de	tected							1					
						<u>Accuracy a</u>	nd Precision						
							1	1	1	7			
D						Analyte	Analyte	Analyte	Analyte	_			
							00		00	1			

Precision and Accuracy of spiked QCs

Spiked quality control sample precision and accuracy were demonstrated at N=3 at the low (4ng/mL), and at medium 1 (40ng/mL), medium 2 (400ng/mL) and high (4000ng/mL) concentrations. The assay has shown to have a linear calibration range of 1-5000 ng/mL. A quadratic regression 1/x² was used to fit the calibration curve, yielding a r² value \geq 0.99. This data demonstrates that the RapidSep method produces similar results to different types of matrices.

Firstly, the column performance was evaluated by testing with five different standards. The analysis was conducted utilising the Agilent 1290 Infinity II dual needle µHPLC system coupled with the MRM detection in ESI positive mode on a ABSciex QTRAP 5500 mass spectrometer. Chromatographic separation was achieved using a reverse phase HALO C18 column cartridge with 10mM ammonium formate + 0.1% formic acid in water and methanol as the mobile phases. As a result, the peak of interest was well separated within a 30 second run time.

Figure 2. Calibration lines from the developed RapidSep method.

Initial assessment: The developed RapidSep method achieved consistent recoveries and the method revealed the calibration range (covered) from 1-5000 ng mL⁻¹ for all five standards. The within-batch precision were within the ±20 %. acceptable limit. After qualification, the method was applied to the analysis of real study samples to examine the chromatographic quality and the risk of ion-suppression / enhancement in biological matrices.

	Jampie	π	QC	QC	QC	u u
	Nominal conc (r	ng/mL)	4.0	40	400	4000
PanidSon	Determine Co	1	4.17	38.6	400	4731
RapiuSep		2	3.39	40.5	379	5024
		3	2.51	41.2	369	4595
method	Mean		3.36	40.1	383.0	4780
	Stdev		0.833	1.37	15.8	219
	Accuracy		84.0	100	95.8	119.
	Precision (%)		24.8	3.42	4.13	4.58

Figure 5. Comparison of Generic with RapidSep method. A and B) Intra-assay linearity, accuracy and precision assessment using Generic vs RapidSep method.

ADME summary graph

Pharmacokinetic parameters assessment

•												
ieneric	PK Parameter		Com	pound	IV 1 mg/kg Blood			Comp	ound P	O 10 mg/kg Blood		DonidQo
	T KT uruniteter	1	2	3	Mean / Median	SD	4	5	6	Mean / Median	SD	napiuse
nothod	Dose (mg/kg)	1.00	1.00	1.00	1.00	-	10.0	10.0	10.0	10.0	-	
nethoa	C0 / Cmax (ng/mL)	561	626	581	589	33.2	793	622	896	770	138	method
	C0 / Cmax (nM)	1222	1363	1267	1284	72.3	1727	1356	1953	1679	302	
	Clast (ng/mL)	15.4	22.1	28.3	21.9	6.44	235	323	292	283	44.7	
	tlast (h)	7.00	7.00	7.00	7.00	-	7.00	7.00	7.00	7.00	-	
	tmax (h)	-	-	-	-	-	2.00	2.00	2.00	2.00	-	
	t1/2 (h)	2.02	2.03	2.10	2.05	0.0450	-	-	-	-	-	
	MRT (h)	2.42	2.53	2.95	2.63	0.277	-	-	-	-	-	
	Vdss (L/kg)	4.7	3.3	4.2	4.08	0.690	-	-	-	-	-	
	CL / CL E (ml/min/kg)	32.1	21.9	24.0	26.0	5.42		-	-	-	-	

A Summary graph showing the Mean TOTAL and FREE concentrations of the drug; following IV, PO administration to the male (C57Bl/6J) mouse at 1,10 mg/kg using the generic method vs the RapidSep method. These graphs are superimposed to each other suggesting the Rapidsep method is equally as effective as the generic method.

DK Daramotor		Comp	ound	V 1 mg/kg Blood		Compound PO 10 mg/kg Blood						
PKParameter	1	2	3	Mean / Median	SD	4	5	6	Mean / Median	SD		
Dose (mg/kg)	1.00	1.00	1.00	1.00	0.00	10.0	10.0	10.0	10.0	-		
C0 / Cmax (ng/mL)	518	651	547	572	70.2	662	714	747	708	42.		
C0 / Cmax (nM)	1128	1419	1193	1246	153	1443	1556	1627	1542	93.		
Clast (ng/mL)	17.0	26.5	29.6	24.4	6.54	292	446	318	352	82		
tlast (h)	7.00	7.00	7.00	7.00		7.00	7.00	7.00	7.00			
tmax (h)	-	-	-	-		2.00	2.00	2.00	2.00			
t1/2 (h)	1.74	2.15	2.20	2.03	0.253	-	-	-	-	-		
MRT (h)	2.34	2.74	3.09	2.72	0.378	-	-	-	-	-		
Vdss (L/kg)	4.4	3.2	4.1	3.9	0.633	-	-	-	-			
CL / CL_F (mL/min/kg)	31	19	22	24	6.25	-	-	-	-			
AUCinf (ng.hr/mL)	534	865	755	718	169	-	-	-	-			
AUCinf (nM.hr)	1163	1885	1644	1564	368	-	-	-	-			
AUC0-t (ng.hr/mL)	491	783	661	645	147	3023	3735	3239	3332	3		
AUC0-t (nM.hr)	1070	1706	1440	1405	319	6588	8138	7059	7262	7		
Fraction Absorbed	-	-	-	-	-	0.580	0.717	0.622	0.640	0.0		
Bioavailability (%) Using AUCinf	-	-	-	-	-	-	-	-	-			
Bioavailability (%) Using AUC0-t	-	-	-	-	-	46.9	57.9	50.2	51.7	5.		
Number of Points used for Lambda z	5.00	4.00	5.00	5.00	-	-	-	-	-			
AUC % Extrapolation to infinity	8.01	9.51	12.5	10.0	2.26	-	-	-	-			
AUC % Back Extrapolation to C0	7.17	5.72	5.22	6.04	1.01	-	-	-	-			

Method

Sample Preparation: Biological samples were prepared by protein precipitation.

1 volume rat plasma /blood + 3 volumes MeOH containing IS	Centrifuge @ 4000RPM 30min, 4°C	1 volume supernatant + 2 volumes water	Mix	LC-MS/MS analysis
--	---------------------------------------	---	-----	-------------------

The rat plasma samples were spiked with metoprolol (internal standard); extracted using protein precipitation.

Chromatography

AUCINI (ng.nr/mL)	213	/63	694	658	120	-	-	-	-	-
AUCinf (nM.hr)	1130	1662	1512	1435	274	-	-	-	-	-
AUC0-t (ng.hr/mL)	474	698	608	593	113	3268	2857	3025	3050	207
AUC0-t (nM.hr)	1032	1521	1325	1293	246	7121	6225	6591	6646	450
Fraction Absorbed	-	-	-	-	-	0.694	0.607	0.643	0.648	0.0439
Bioavailability (%) Using AUCinf	-	-	-	-	-	-	-	-	-	-
Bioavailability (%) Using AUC0-t	-	-	-	-	-	55.1	48.2	51.0	51.4	3.48
Number of Points used for Lambda z	4.00	4.00	5.00	4.00	-	-	-	-	-	-
AUC % Extrapolation to infinity	8.67	8.47	12.4	9.84	2.19	-	-	-	-	-
AUC % Back Extrapolation to C0	7.89	6.21	6.00	6.70	1.03	-	-	-	-	-

All typical PK parameters such as clearance, volume of distribution, AUC, half-life $(T_{1/2})$, C_{max} , T_{max} and bioavailability are calculated, and the differences between the two methods are less than ±20 %.

Summary/conclusions

The data presented here demonstrates the success on Rapid Chromatography used to analyse discovery PK. It has shown to be reproducible and reliable whilst generating equivalent pharmacokinetic results to those obtained by the traditional generic method. To address throughput challenges, we have successfully reduced the total injection-to-injection cycle time to 60 s as opposed to 138 s with a direct RapidSep column setup. The introduction of this approach in our laboratory, in place of current analytical methods, will provide at least a 50% improvement in LCMS capacity without compromising chromatographically sensitivity and resolution.