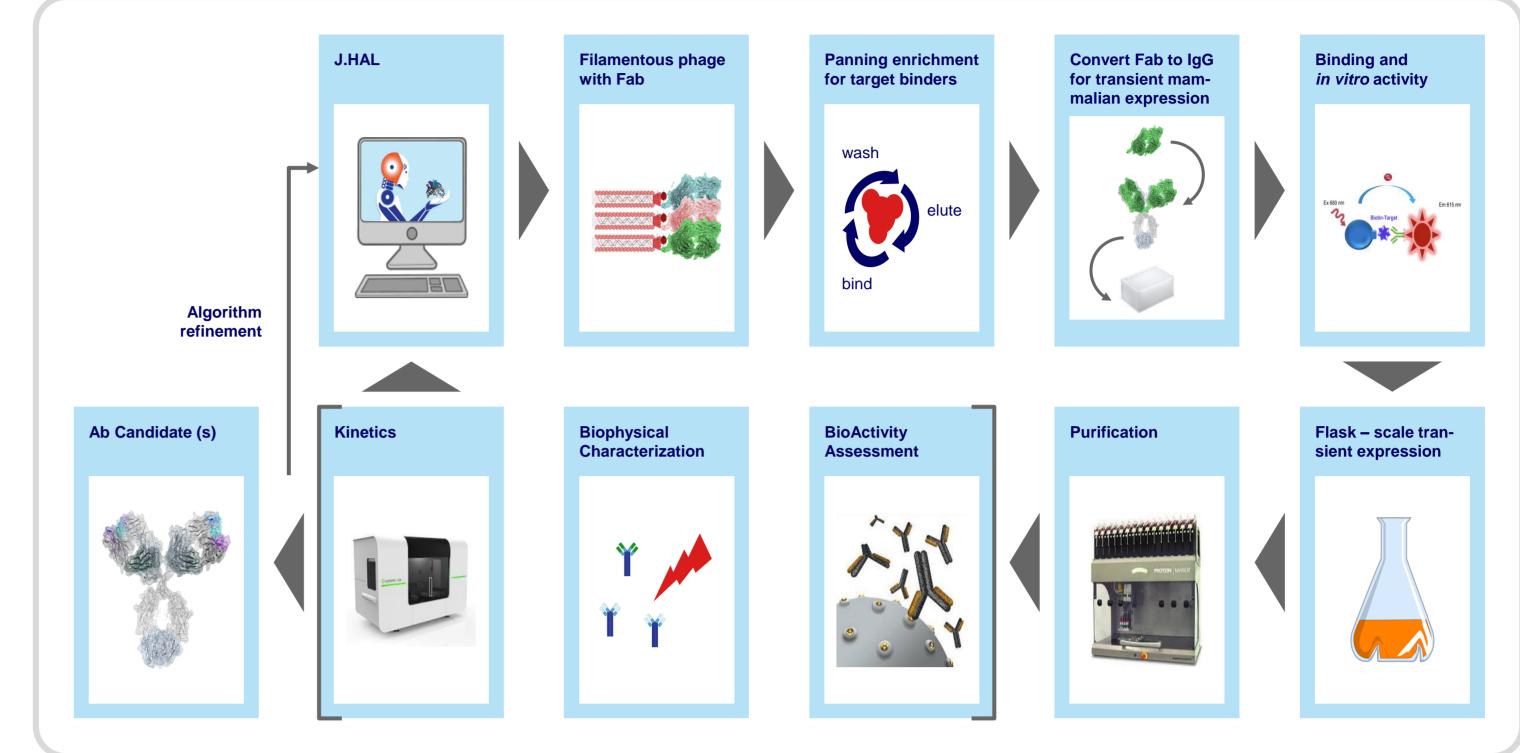
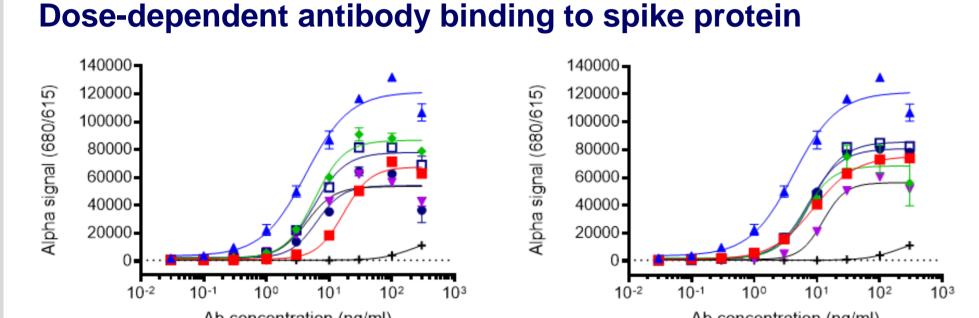
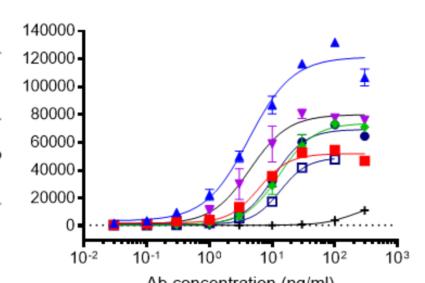

Al-Derived Antibodies are novel, diverse and pharmacologically active against multiple SARS-CoV-2 strains


Cristina Moldovan Loomis¹, Megan Sprague¹, Andrew Asakawa¹, Gregory Neveu², Antoine Alam², Randal Ketchem¹ and Rutilio Clark¹ ¹Just – Evotec Biologics Inc., US; ²Evotec, France

We have developed an AI-generated antibody library platform utilizing a Generative Adversarial Network (GAN) that generates novel sequences which mimic natural human response, as well biasing toward diversity and developability features.

The resulting Humanoid Antibody Library (J.HALSM) was successfully screened to obtain a panel of novel, diverse and pharmacologically active human antibodies against SARS-CoV-2.


SARS-CoV-2 Antibody Discovery Workflow

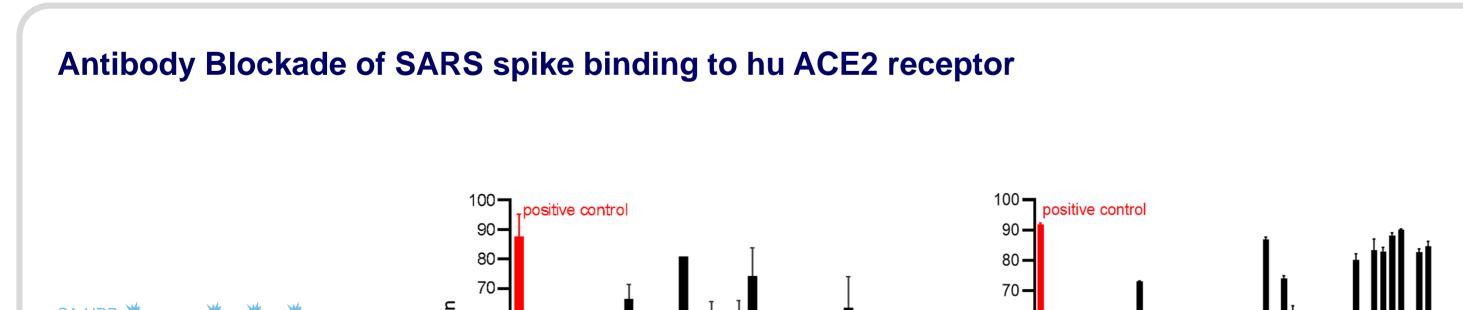


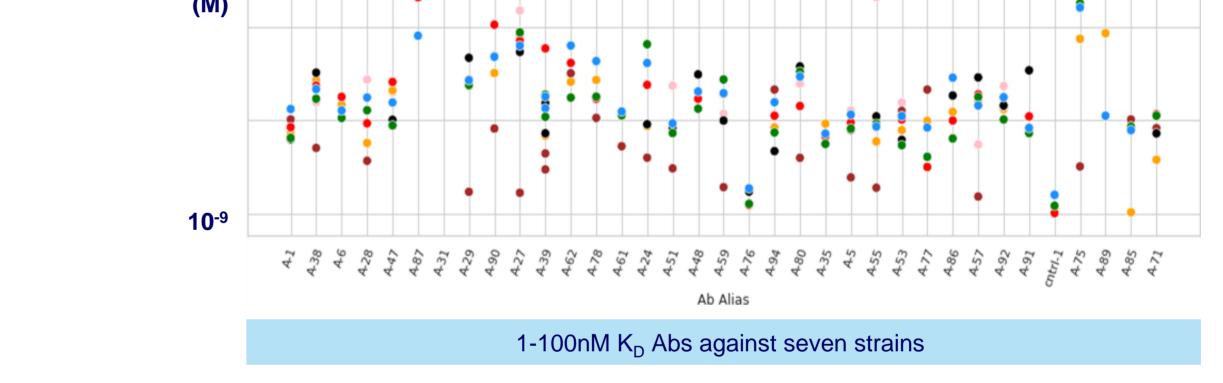
- Large, human-derived antibody sequence training set extracted from OAS
- GAN training models are germline specific
- Ability to generate synthetic humanoid large, diverse, combinatorial germline pairings for library creation
- GAN-generated antibodies represent B-cell response including full SHM

Preprint available at bioRxiv (*https://www.biorxiv.org/content/10.1101/2020.04.12.024844v2*)

- J.HAL Fab on phage panned on Wuhan RBD or on UK S1 antigens with increasing stringency • Enriched Fab converted to IgG and transiently expressed in 293F cells at 96 deep well scale • Unpurified transfection supernatants used for screening binding and activity assays
- Top candidates expressed at flask scale, purified and tested for SARS-CoV-2 neutralization ability across multiple strains

J.HAL IgG antibodies cross-react across multiple SARS-CoV-2 strains

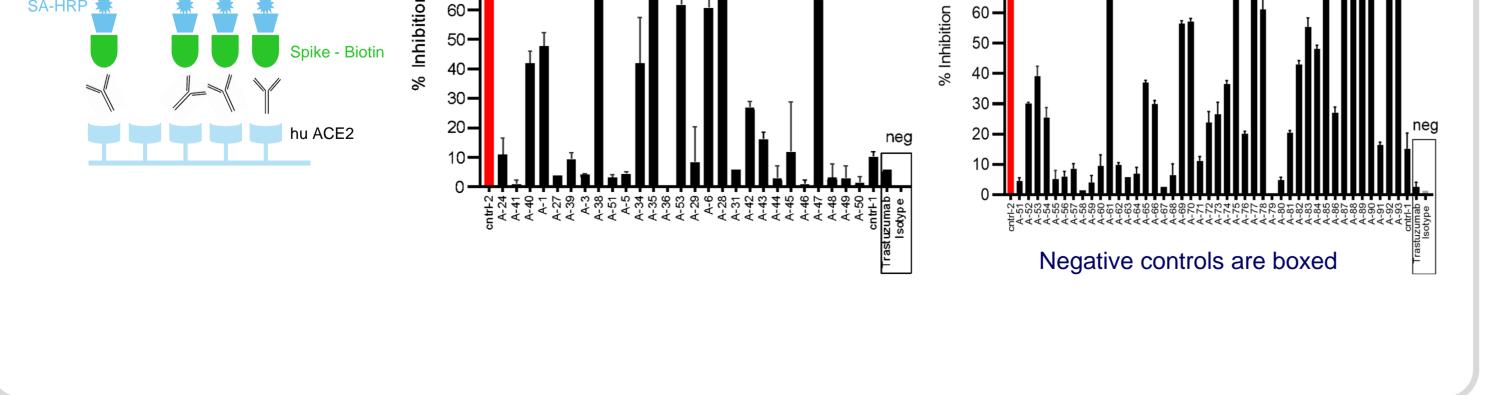

Brazil - P.1 Denmark - Mink Cluster-5 Indian - B.1.617 San Diego - 20C-US South African - B1.351 UK - B1.1.7 Wuhan KD / / / /


J.HAL IgG antibodies exhibit good binding to SARS-CoV-2 spike protein

Ab	EC ₆₀ (ng/ml)	Max value	Ab	EC ₆₀ (ng/ml)	Max value		Ab	EC ₆₀ (ng/ml)	Max value				
Positive control Ab	4.2	121545	Positive control Ab	4.2	121545		Positive control Ab	4.2	121545				
A-24	17.0	67708	A-93	8.9	75566		A-29	6.1	52083				
A-1	5.8	86820	A-51	6.3	68423		A-6	13.3	73976				
A-94	5.7	78177	A-5	8.3	85746		A-28	13.4	38133				
A-27	4.4	53712	A-34	12.5	56439		A-94	4.4	80143				
A-39	6.3	54307	A-35	7.2	80909		A-48	10.6	69524				
Poor binder Ab	208.3	17156	Poor binder Ab	208.3	17156		Poor binder Ab	208.3	17156				
- Positive	control Ab		- Positive	control Ab			Positive o	control Ab					
-∎ A-24 -◆ A-1			- ■ - A-93 - ↓ A-51				→ A-6						
- B - A-94			- B - A-5				- D - A-28						
- - A-27			- - A-34				- - A-94						
- - A-39			- - A-35			- - A-48							
Poor binder Ab example			+ Poor bind	der Ab example		Poor binder Ab example							

- Candidates that specifically bound SARS-CoV-2 spike protein and did not bind an irrelevant antigen were further characterized for dose-dependent binding using AlphaLISA technology
- A total of 73 unique antibody sequences specific for SARS-CoV-2 Spike protein were identified in the primary "yes/no" binding screen
- Binding assays were performed using unpurified transfection supernatants and later reproduced with purified material
- All antibody data are from native library candidates without any affinity maturation
- Feasible to screen unpurified transfection supernatants to accelerate discovery timelines

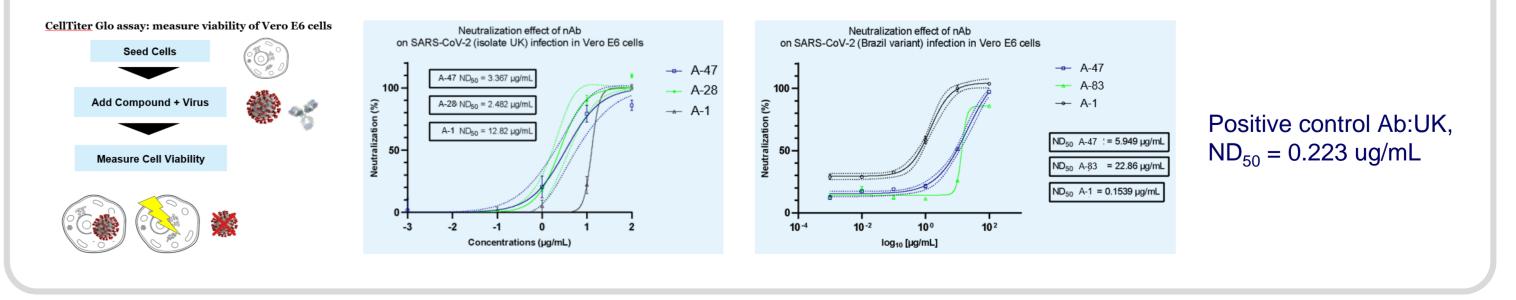
J.HAL IgG antibodies effectively block spike:huACE2R interaction



- Binding of selected candidates to the spike protein from seven viral strains was characterized by SPR conducted on Carterra LSA
- SPR binding profiles of purified candidates matched the binding profiles of unpurified transient transfection supernatants
- All antibody data are from native library candidates without any affinity maturation
- Feasible to utilize SPR technology to assess pan cross-reactivity of unpurified transfection supernatants to accelerate discovery timelines

J.HAL IgG antibodies neutralize multiple strains of SARS-CoV-2

Spike-pseudotyped VSV model and J.HAL Abs summary of activity


vike (S)	ND50 in µg/mL																	
•ke (S) +	Predominant Mutations	Lineage	Variant	Name	Strains	Seq7		Seq8		Seq 35		Seq53		Seq232		Seq	271	
//		-				Manip 1	Manip 2											
Neutralizing	-	A		SD-19	SARS-CoV-2 USA-WA1/2020	>10	6.8	9	9.5	2	2.1	0.3	0.6	8.3	6.5	3.2	0.99	
antibody	D614G	A		D614G	SARS-CoV-2 USA-WA1/2020, D614G	2.5	4.9	3.9	8.9	1	0.2	0.2	0.003	3.6	9.1	1	1	
bation																		
@37°C	N 501Y, P681H	B.1.1.7	Alpha	English	SARS-CoV-2 hCoV-19/England/204820464/2020	2	1	2.8	7.8	1.4	0.8	0.2	0.08	2.4	0.2	2.5	0.7	
	N 501Y, P681H	B.1.1.7	Alpha	USA	SARS-CoV-2 USA/CA_CDC_5574/2020	0.7	3.8	1.6	1.2	0.7	8.5	0.07	0.9	1	2.6	1	1	
	Y453F	B.1.1.298	2	Denmark	SARS-CoV-2 hCoV-19/Denmark/DCGC-3024/2020	1.6		4.1	-	0.9	-	0.2	-	2.9	-	2.3	-	
us/Ab mixture onto cells	K417N, N501Y, E484K	B.1.351	Beta	\$21	SARS-CoV-2 hCoV-19/South Africa/KRISP-EC-K005321/2020	0.2	3.1	0.2	2.2	0.2	0.6	>10	>10	0.7	0.99	>10	>10	
	K417N, N 501Y, E484K	B.1.351	Beta	\$25	SARS-CoV-2 hCoV-19/South Africa/KRISP-K005325/2020	0.3	-	0.2	-	0.7	-	>10	-	0.4	-	>10	-	
*	K417T, N501Y, E484K	P.1	Gamma	Brazil	SAR S-Co V-2 hCo V-19/Japan/TY 7-503/2021	0.2	0.6	0.1	0.4	0.06	0.99	>10	>10	0.1	0.8	>10	>10	
Assess	L452R, E484Q, P681R	B.1.617.1	Карра	Indian	SARS-CoV-2 hCoV-19/USA/CA-Stanford-15_S02/2021	>10	>10	>10	>10	1.9	7.9	0.2	0.4	>10	>10	0.8	1	
infection	14528 T478K P6818	B1 617 2	Delta	DELTA	SARS-CoV-2 bCoV-19/USA/PHC658/2021	>10	>10	>10	>10	0.35	0.35	0.039	0.08	>10	>10	0.51	07	

- Candidate antibody supernatants that specifically bound SARS-CoV-2 Spike protein were tested for their ability to block binding of SARS-CoV-2 spike protein to human ACE-2 receptor
- Multiple antibodies identified that effectively block spike: human ACE2 receptor interaction
- Feasible to screen unpurified transfection supernatants for functional activity

activity													
	Y145N, N501Y, E484K, P681H B1.621.1 Mu	MU SARS-CoV-2 hCoV-19/Columbia	>10	>10 >10	>10	8.76	2.8	>10	>10	>10	>10	>10	>10

SARS-CoV-2 infection model and examples of J.HAL Abs neutralization activity

- Neutralization ability of candidate antibodies was assessed using VSV pseudotyped-system harboring the spike envelope glycoprotein of SARS-CoV-2; multiple strains were evaluated
- Multiple candidates were demonstrated to have neutralizing activity against several strains of SARS-CoV-2
- All antibody data are from **native library candidates without any affinity maturation**

Acknowledgements: Danielle van Citters, Kathryn McLean, Lindsay Pautsch, Caroline Carbonelle, Fred Hutch Carterra LSA SPR facility