
Achieving Continuous Manufacturing through Equipment Design

Just-Evotec Biologics: focus on technology to drive access

Our Mission

Design and apply innovative technologies to dramatically expand global access to biotherapeutics

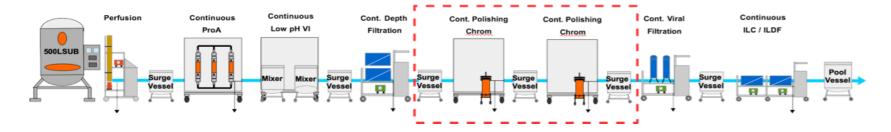
Partnership Successes

Shared Engineering Mindset

- To bring our manufacturing platform to life we needed a partner that shared values:
 - Vision
 - Flexibility
 - Integration
 - Quality
- The relationship would also need to grow as we did: equipment would need to facilitate technology and design improvements
 - Lifecycle approach to systems and technology
 - Existing systems are updated instead of obsoleted
 - Look for novel solutions, and perform the engineering analysis to support

Pressure Cup Example

- Developed own single use pressure sensor
- Supply chain shortages: brought the missing functionality in-house
- New technology -> found a better way to machine these parts and manifolds
- Developed a step-by-step plan to implement improvement while supporting our need to stay in prdxn
- Detailed implementation plan; robust testing schedule



Single Use Chromatography

Polishing Steps and Column Packing

- Systems can be operated in batch or continuous mode
- Wide turn down ratios allow for a greater range to accommodate operations
- Onboard inline dilution capabilities allow for the use of concentrates
- Single-use flow paths and instrumentation minimize product change over time and cleaning qualification

Automation

A Driver for Alternative Systems

Automation Enables our E2E Platform

- Coordinates operations between skids, adjusts flowrates to account for differences in processing time
- Provides the ability to Hold and Resume individual equipment without stopping the train

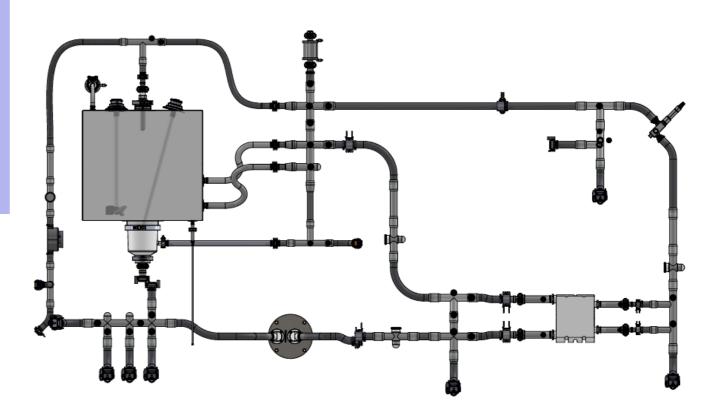
Driver towards Repligen Chromatography

- Allows us to coordinates operations between our skids and deal with variability without operator interaction.
 - DeltaV commands adjust for differences in processing time
- Automation is operable in both batch and continuous as well from the skid or external DCS.
- Advanced processing with off the shelf systems can prove difficult
 - Bugs, delays, and system communication breakdowns become critical quickly in non-batch ops
- Method editor sequencing is highly configurable, adaptable to our varied processes
 - Ensure CSV compliance
 - Communicates with MES

Single Use Chromatography Skids

Polishing Chromatography and Column Packing

Element	Value Proposition in Design
 Automation 	 Ability to perform batch or continuous Automation designed by Repligen with Just-Evotec input
• Inline Dilution	Concentrated buffers allow for reduction in footprint and prep requirements
Column Packing Alignment	 Column packing skid designed on our chrom skid base design Allows for flexible use – backup equipment Added packing arm and conductivity sensors for column performance testing Pre-defined automation for HETP and asymmetry calculation
Critical Instrumentation	 Clamp-on flow sensors on each channel as well as pre-column Dual wave-length UV pre and post column Alignment between design and instrumentation on column packing and polishing chrom
• Footprint	 Small system footprint critical to optimize the reduced clean room space within the J.POD^(R) facility design Mobile through the facility (different layouts for hybrid vs. continuous processing)



Purification Tangential Flow Filtration System

Ultrafiltration and Diafiltration

- Challenges for a single-use TFF system:
 - Can the manifold handle the pressure necessary?
 - How do we sanitize the system?
 - Minimize system hold up?
 - Mixing in the vessel?
 - Recovery strategy from the vessel?

Purification TFF Skid

Ultrafiltration/Diafiltration

Element	Value Proposition in Design
• Manifold Design	 High pressure operation required robust tubing Braided silicone used for manifold components Machined valve blocks (exoskeleton) provide tubing support where braided is infeasible
System Hold Up	Small holdup volume < 1L
• Mixing	 Single use recirculation vessel with tulip shape (sump) 2 agitator heights – optimal mixing Single-use impeller design - insert the agitator shaft externally Option to connect an external vessel to scale
• Recovery	 Multiple recovery methods Flow path same as product through recovery port Reverse recovery using the addition pump Nearly equivalent to system hold up volume Collection line from recirc vessel to mitigate pool dilution during recovery
• Enabled for Changeover Operation	 Designed to enable use of external recirc vessel for NaOH sanitization Retentate return to drain Integrity test operations can be done online MFC and clean air connections, automation recipe base provided

Harvest Tangential Flow Filtration System

Harvest Perfusion

Harvest Perfusion Process

- Continuous harvest perfusion
- Enables higher yields per volume, supports very high cell densities

Repligen: KPS 2000

- 2-pump system
 - Creativity required in designing for scale up
 - Combines pre-gamma'd single-use manifolds and custom-built assemblies to allow multiple filter and permeate configurations
 - Toulouse system underwent design iteration; lessons learned being retrofitted to J.POD^(R) facility in Washington

Perfusion TFF Skid

Harvest Perfusion

Element	Value Proposition in Design
Component Integration	 Mounted flowmeters directly on filter stands at an angle for optimized flow readout Focus on use of right flow sensor for right application: mix of Levitronix and ultrasonic, clamp-on
Automation Flexibility	 DeltaV native system, with PLC setup transferred between sites for easier code transfer Installed a simplified software version to allow for easier troubleshooting
Manifold Design Improvements	 Redesigned tubing assemblies to eliminate unnecessary sizing changes, reduce shear stresses Scaled up tubing sizes to allow for larger processing volumes
Scalability	 Increasing production sizing calls drives additional filters, sizes Need system to fit range of production SUB output Able to ramp up to increased flow rates as platform shear increased

